Answer:
-3/5
Step-by-step explanation:
Consider right triangle ΔABC with legs AC and BC and hypotenuse AB. Draw the altitude CD.
1. Theorem: The length of each leg of a right triangle is the geometric mean of the length of the hypotenuse and the length of the segment of the hypotenuse adjacent to that leg.
According to this theorem,

Let BC=x cm, then AD=BC=x cm and BD=AB-AD=3-x cm. Then

Take positive value x. You get

2. According to the previous theorem,

Then

Answer: 
This solution doesn't need CD=2 cm. Note that if AB=3cm and CD=2cm, then

This means that you cannot find solutions of this equation. Then CD≠2 cm.
Answer:
36
Step-by-step explanation:
All angles in the triangle will equal to 180
Angle A = 180-98-46
A=36
Step-by-step explanation:
b=a-80
c=b-61
c=a-141
a+b+c=3a-221=430
3a=651
a=217 & b =137 & c=76
Explanation:
There may be a more direct way to do this, but here's one way. We make no claim that the statements used here are on your menu of statements.
<u>Statement</u> . . . . <u>Reason</u>
2. ∆ADB, ∆ACB are isosceles . . . . definition of isosceles triangle
3. AD ≅ BD
and ∠CAE ≅ ∠CBE . . . . definition of isosceles triangle
4. ∠CAE = ∠CAD +∠DAE
and ∠CBE = ∠CBD +∠DBE . . . . angle addition postulate
5. ∠CAD +∠DAE ≅ ∠CBD +∠DBE . . . . substitution property of equality
6. ∠CAD +∠DAE ≅ ∠CBD +∠DAE . . . . substitution property of equality
7. ∠CAD ≅ ∠CBD . . . . subtraction property of equality
8. ∆CAD ≅ ∆CBD . . . . SAS congruence postulate
9. ∠ACD ≅ ∠BCD . . . . CPCTC
10. DC bisects ∠ACB . . . . definition of angle bisector