#4 and #5:
To find pH given concentration of H+ or H30+
pH = - log (H+ or H30+ M)
To find pH given concentration of OH-
Since you already found the pH for this (in #4), you subtract #4's answer from 14.
14 - (pH) = pOH
Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2
Answer:K2X
Explanation: Valency can be defined as the combining power of an element. It is the valency that dictates the value an element will have when writing a chemical formula for its compound.
MgX is a compound of magnesium and an element X. The valency of magnesium in most of its compound is +2. Now for the 2 to have been absent in the chemical formula, this shows that the element X itself have a valency if -2 for the valencies of both to have canceled out.
Now considering the element potassium, it is an alkaline metal belonging to group 1 of the periodic table. Hence, it is expected that it has a valency of +1
Forming a compound with element X means there would be an exchange of valencies between the two. We have established that x has a valency of -2. The formula of the compound thus formed by exchanging the valencies of both element would be K2X
Organic chemistry is all about CARBON!!!!!!

Now, balance the equation:


in gaseous state exist as a diatomic molecule.