Answer:
ΔS° = 180.5 J/mol.K
Explanation:
Let's consider the following reaction.
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g)
The standard molar entropy of the reaction (ΔS°) can be calculated using the following expression.
ΔS° = ∑np × S°p - ∑nr × S°r
where,
ni are the moles of reactants and products
S°i are the standard molar entropies of reactants and products
ΔS° = 4 mol × S°(NO(g)) + 6 × S°(H₂O(g)) - 4 mol × S°(NH₃(g)) - 5 mol × S°(O₂(g))
ΔS° = 4 mol × 210.8 J/K.mol + 6 × 188.8 j/K.mol - 4 mol × 192.5 J/K.mol - 5 mol × 205.1 J/K.mol
ΔS° = 180.5 J/K
This is the change in the entropy per mole of reaction.
Answer:
The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Explanation:
From the given information:
The activation barrier for the hydrolysis of sucrose into glucose and fructose is 108 kJ/mol.
In this same concentration for the glucose and fructose; the reaction rate can be calculated by the rate factor which can be illustrated from the Arrhenius equation;
Rate factor in the absence of catalyst:

Rate factor in the presence of catalyst:

Assuming the catalyzed reaction and the uncatalyzed reaction are taking place at the same temperature :
Then;
the ratio of the rate factors can be expressed as:

![\dfrac{k_2}{k_1}={ \dfrac {e^{[ Ea_1 - Ea_2 ] }}{RT} }}](https://tex.z-dn.net/?f=%5Cdfrac%7Bk_2%7D%7Bk_1%7D%3D%7B%20%20%5Cdfrac%20%7Be%5E%7B%5B%20%20Ea_1%20-%20Ea_2%20%5D%20%7D%7D%7BRT%7D%20%7D%7D)
Thus;

Let say the assumed temperature = 25° C
= (25+ 273)K
= 298 K
Then ;



The barrier has to be 34.23 kJ/mol lower when the sucrose is in the active site of the enzyme
Answer:
1.60x10⁶ billions of g of CO₂
Explanation:
Let's calculate the production of CO₂ by a single human in a day. The molar mass of glucose is 180.156 g/mol and CO₂ is 44.01 g/mol. By the stoichiometry of the reaction:
1 mol of C₆H₁₂O₆ -------------------------- 6 moles of CO₂
Transforming for mass multiplying the number of moles by the molar mass:
180.156 g of C₆H₁₂O₆ ----------------- 264.06 g of CO₂
4.59x10² g ---------------- x
By a simple direct three rule:
180.156x = 121203.54
x = 672.77 g of CO₂ per day per human
So, in a year, 6.50 billion of human produce:
672.77 * 365 * 6.50 billion = 1.60x10⁶ billions of g of CO₂
Answer:
Gases are compressible, meaning that when put under high pressure, the particles are forced closer to one another. This decreases the amount of empty space and reduces the volume of the gas. Gas volume is also affected by temperature. When a gas is heated, its molecules move faster and the gas expands.