1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
3 years ago
15

Alex had 45 toy cars he put 26 toy in a box how many toy cars are not in the box ?

Mathematics
2 answers:
Oksana_A [137]3 years ago
7 0
19 toy cars arent in the box

erastovalidia [21]3 years ago
3 0
19 Toy Cars. Hope this helps!
You might be interested in
Let M be the closed surface that consists of the hemisphere M1:x2+y2+z2=1,z≥0, and its base M2:x2+y2≤1,z=0. Let E be the electri
Kryger [21]

Answer:

yep

Step-by-step explanation:

8 0
3 years ago
Please I need help on this one
lesantik [10]

Answer:

2520

Step-by-step explanation:

18×24=432

432÷2=216

216×35=7560

7560÷3=2520

3 0
3 years ago
I'm stuck here on this part
adoni [48]
x =  \frac{8 + 6}{2} ,  \frac{8-6}{2}
x =  \frac{14}{2} ,  \frac{2}{2}
x = 7, 1
8 0
3 years ago
Given that 'n' is a natural number. Prove that the equation below is true using mathematical induction.
LenaWriter [7]

<h3>To ProvE :- </h3>

  • 1 + 3 + 5 + ..... + (2n - 1) = n²

<u>Method</u><u> </u><u>:</u><u>-</u>

If P(n) is a statement such that ,

  1. P(n) is true for n = 1
  2. P(n) is true for n = k + 1 , when it's true for n = k ( k is a natural number ) , then the statement is true for all natural numbers .

\sf\to \textsf{ Let P(n) :  1 + 3 + 5 + $\dots$ +(2n-1) = n$^{\sf 2}$ }

Step 1 : <u>Put </u><u>n </u><u>=</u><u> </u><u>1</u><u> </u><u>:</u><u>-</u><u> </u>

\sf\longrightarrow LHS = \boxed{\sf 1 } \\

\sf\longrightarrow RHS = n^2 = 1^2 = \boxed{\sf 1 }

Step 2 : <u>Assume </u><u>that </u><u>P(</u><u>n)</u><u> </u><u>is </u><u>true </u><u>for </u><u>n </u><u>=</u><u> </u><u>k </u><u>:</u><u>-</u>

\sf\longrightarrow 1 + 3 + 5 + \dots + (2k - 1 ) = k^2

  • Add (2k +1) to both sides .

\sf\longrightarrow 1 + 3+5+\dots+(2k-1)+(2k+1)=k^2+(2k+1)

  • RHS is in the form of ( a + b)² = a²+b²+2ab .

\sf\longrightarrow 1 + 3+5+\dots+(2k-1)+(2k+1)= (k +1)^2

  • Adding and subtracting 1 to LHS .

\sf\longrightarrow 1 + 3+5+\dots+(2k-1)+(2k+1) + 1 -1  = (k +1)^2 \\

\sf\longrightarrow 1 + 3+5+\dots+(2k-1)+(2k+2) - 1 = (k +1)^2

  • Take out 2 as common .

\sf\longrightarrow 1 + 3+5+\dots+(2k-1)+\{2(k+1)-1\}= (k +1)^2

  • P(n) is true for n = k + 1 .

Hence by the principal of Mathematical Induction we can say that P(n) is true for all natural numbers 'n' .

<em>*</em><em>*</em><em>Edits</em><em> are</em><em> welcomed</em><em>*</em><em>*</em>

8 0
3 years ago
Read 2 more answers
Need help on number 4
Bess [88]

Answer:

<u><em>HOPE THIS HELPS U IT WAS complicated TO SOLVE BUT YEA I RLLY HOPE THIS HELPS AND GOOD LUCK!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</em></u>

Step-by-step explanation:

<h2>The mass of wax needed to make the candle is </h2><h2><u><em>2110.08(approx)2110.1gm</em></u></h2>
7 0
3 years ago
Other questions:
  • Can you help me solve systems of equations by elimination step by step<br> -5x+9y=-12<br> 3x+2y=22
    12·1 answer
  • What property is used in the second step of solving the inequality below?
    9·1 answer
  • - kobby is 5 years younger than Nana
    6·2 answers
  • A function f (x) = √ x is transformed into the function
    6·1 answer
  • How do u solve b=f^2 A+ 2H A awnser for A
    12·1 answer
  • Solve the inequality. Show your work. |4r + 8| ≥ 32
    14·2 answers
  • Please helpppppppppp
    5·1 answer
  • Tan145+tan85/1-tan145*tan85 as asingle funciton
    9·1 answer
  • 11x + x helppp plzzz
    10·1 answer
  • Find 15/4 + (-4 1/3). Write your answer as a fraction in simplest form.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!