Calculation of relative maxima and minima of a function f (x) in a range [a, b]:
We find the first derivative and calculate its roots.
We make the second derivative, and calculate the sign taken in it by the roots of the first derivative, and if:
f '' (a) <0 is a relative maximum
f '' (a)> 0 is a relative minimum
Identify intervals on which the function is increasing, decreasing, or constant. G (x) = 1- (x-7) ^ 2
First derivative
G '(x) = - 2 (x-7)
-2 (x-7) = 0
x = 7
Second derivative
G '' (x) = - 2
G '' (7) = - 2 <0 is a relative maximum
answer:
the function is increasing at (-inf, 7)
the function is decreasing at [7, inf)
Step-by-step explanation:
X = 10 (use pyth)
Y = 11.18(use pyth)
Since the dimension of the scale model is fourth of dimensions of the room, divide by 4 the given dimensions.
new dimensions:
= 18 ft / 4 = 9/2 ft
= 16 ft / 4 = 4 ft
The area is calculated by multiplying the dimensions,
Area = (9/2 ft)(4 ft) = 18 ft²
Therefore, the area of the scale model is equal to 18 ft².
it is the last one before the time
Answer:
Option B
Step-by-step explanation:
Option A
a² - b² = (a+ b)(a - b)
It's a polynomial identity.
Option B
a³ + b³ = (a - b)(a² - ab + b²)
It's not a polynomial identity.
Because the identity is,
a³ + b³ = (a + b)(a² - ab + b²)
Option C
a³ - b³ = (a - b)(a² + ab + b²)
It's a polynomial identity.
Option D
(a²+ b²)(c² + d²) = (ac - bd)² + (ad + bc)²
= a²c² - 2abcd + b²d² + a²d² + b²c² + 2abcd
= a²c² + b²c² + b²d² + a²d²
= c²(a² + b²) + d²(a² + b²)
= (a²+ b²)(c² + d²)
Therefore, it's a polynomial identity.
Option B will be the answer.