Let
x = number of apples.
y = number of oranges.
we have to write the following equation to represent the problem:
4x + 6y = 15
To satisfy the equation, Jon must have used
x = 2.25
y = 1
Substituting
4 (2.25) +6 (1) = 15
9 + 6 = 15
answer
Jhon used 2.25kg of apple and 1kg of orange to make the salad.
Note: Since the problem does not have any other restrictions, there may be several apple and orange combinations that cost $ 15 per salad.
Step-by-step explanation:
Area of circular pond=22/7×14×14
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>2</em><em>2</em><em>/</em><em>7</em><em>×</em><em>1</em><em>9</em><em>6</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>6</em><em>1</em><em>6</em><em>m</em>
$24 x 6 = 144 Minus the $6 she spent per week -$36 = $108
I guess that is what you meant when you typed "she saved $24 each week she saves $6???
Answer:

Step-by-step explanation:
Each vertical asymptote corresponds to a zero in the denominator. When the function does not change sign from one side of the asymptote to the other, the factor has even degree. The vertical asymptote at x=-4 corresponds to a denominator factor of (x+4). The one at x=2 corresponds to a denominator factor of (x-2)², because the function does not change sign there.
__
Each zero corresponds to a numerator factor that is zero at that point. Again, if the sign doesn't change either side of that zero, then the factor has even multiplicity. The zero at x=1 corresponds to a numerator factor of (x-1)².
__
Each "hole" in the function corresponds to numerator and denominator factors that are equal and both zero at that point. The hole at x=-3 corresponds to numerator and denominator factors of (x-3).
__
Taken altogether, these factors give us the function ...
