1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anettt [7]
3 years ago
10

I need help! Please explain if you can! I need to find the csc A, sec A, and cot A.

Mathematics
1 answer:
Vika [28.1K]3 years ago
8 0

Step-by-step explanation:

the length of AB = √10²+7²=√149

so,

csc A = AB/BC = √149/ 7

sec A = AB/AC = √149/ 10

cot A = AC/BC = 10/7

You might be interested in
12 ft 9 in <br>08ft 10in<br>+11ft 4in​
Jobisdone [24]

Answer:

what is the question?

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Plz answer fast for this question
torisob [31]
170 cm. The unknown length on the left is 21 cm
5 0
3 years ago
How do you find which function has a greater rate of change?
Harman [31]
<span>sometimes the</span> greater rate of change has<span> a “steeper” slope or </span>greater<span> absolute value than the other function ... </span>
5 0
3 years ago
Whats the percent change of 10 gallons to 24 gallons
Nezavi [6.7K]

Answer: 140%

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Rationalize the denominator and simplify.
cestrela7 [59]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3151018

——————————
 
     \mathsf{\dfrac{3\sqrt{6}+5\sqrt{2}}{4\sqrt{6}-3\sqrt{2}}}


Multiply and divide by the conjugate of the denominator, which is  \mathsf{4\sqrt{6}+3\sqrt{2}:}

     \mathsf{=\dfrac{\big(3\sqrt{6}+5\sqrt{2}\big)\cdot \big(4\sqrt{6}+3\sqrt{2}\big)}{\big(4\sqrt{6}-3\sqrt{2}\big)\cdot \big(4\sqrt{6}+3\sqrt{2}\big)}}


Expand those products and eliminate the brackets:
 
     \mathsf{=\dfrac{\big(3\sqrt{6}+5\sqrt{2}\big)\cdot 4\sqrt{6}+ \big(3\sqrt{6}+5\sqrt{2}\big)\cdot 3\sqrt{2}}{\big(4\sqrt{6}-3\sqrt{2}\big)\cdot 4\sqrt{6}+ \big(4\sqrt{6}-3\sqrt{2}\big)\cdot 3\sqrt{2}}}\\\\\\ \mathsf{=\dfrac{12\cdot \big(\sqrt{6}\big)^2+20\sqrt{2}\cdot \sqrt{6}+9\cdot \sqrt{6}\cdot \sqrt{2}+15\cdot \big(\sqrt{2}\big)^2}{16\cdot \big(\sqrt{6}\big)^2-12\cdot \sqrt{2}\cdot \sqrt{6}+ 12\cdot \sqrt{6}\cdot \sqrt{2}-9\cdot \big(\sqrt{2}\big)^2}}\\\\\\ \mathsf{=\dfrac{12\cdot 6+20\sqrt{2\cdot 6}+9\sqrt{6\cdot 2}+15\cdot 2}{16\cdot 6-12\sqrt{2\cdot 6}+ 12\sqrt{6\cdot 2}-9\cdot 2}}\\\\\\ \mathsf{=\dfrac{72+20\sqrt{12}+9\sqrt{12}+30}{96-12\sqrt{12}+12\sqrt{12}-18}}

     \mathsf{=\dfrac{72+29\sqrt{12}+30}{96-18}}\\\\\\ \mathsf{=\dfrac{102+29\sqrt{2^2\cdot 3}}{78}}\\\\\\ \mathsf{=\dfrac{102+29\cdot \sqrt{2^2}\cdot \sqrt{3}}{78}}\\\\\\ \mathsf{=\dfrac{102+29\cdot 2\sqrt{3}}{78}} 

     \mathsf{=\dfrac{102+58\sqrt{3}}{78}}\\\\\\ \mathsf{=\dfrac{\,\diagup\!\!\!\! 2\cdot \big(51+29\sqrt{3}\big)}{\diagup\!\!\!\! 2\cdot 39}} 

     \mathsf{=\dfrac{51+29\sqrt{3}}{39}}\quad\longleftarrow\quad\textsf{this is the answer.}


I hope this helps. =)

4 0
3 years ago
Other questions:
  • Measure height of apartment building
    8·1 answer
  • Solve the inequality 12(1/2x-1/3)&gt;8-2x
    15·1 answer
  • I need help with this
    9·2 answers
  • (SAT Prep) Find the value of x
    5·2 answers
  • 9) Solve for w:<br> W +12<br> 2w
    14·2 answers
  • Find the value of 3(5. 10 + 2).
    11·2 answers
  • What is the answer to 20t-10t+2t
    10·1 answer
  • My sister is half my age when I was 6 now im 70 how old is she?​
    6·1 answer
  • 1. Jane went shopping and bought a shirt for $27, a skirt for $32, and a pair of shorts for $14. Choose the answer that is the b
    12·2 answers
  • Find x in the image below
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!