<h3><em>Answer: x = -28</em></h3><h3 /><h3><em>Step-by-step explanation:</em></h3><h3><em>Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
</em></h3><h3><em>x/2+1-(1/4*x-6)=0 </em></h3><h3><em> 1
</em></h3><h3><em>Simplify —
</em></h3><h3><em> 4</em></h3><h3 /><h3><em> x 1 </em></h3><h3><em> (— + 1) - ((— • x) - 6) = 0 </em></h3><h3><em> 2 4 </em></h3><h3 /><h3><em>Subtracting a whole from a fraction
</em></h3><h3 /><h3><em>Rewrite the whole as a fraction using 4 as the denominator :
</em></h3><h3 /><h3><em> 6 6 • 4
</em></h3><h3><em> 6 = — = —————
</em></h3><h3><em> 1 4
</em></h3><h3><em>Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
</em></h3><h3 /><h3><em>Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator</em></h3><h3 /><h3 /><h3><em> Adding up the two equivalent fractions
</em></h3><h3><em>Add the two equivalent fractions which now have a common denominator
</em></h3><h3 /><h3><em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
</em></h3><h3 /><h3><em> x - (6 • 4) x - 24
</em></h3><h3><em> ——————————— = ——————
</em></h3><h3><em> 4 4 </em></h3><h3><em> </em></h3><h3 /><h3><em> x (x - 24)
</em></h3><h3><em> (— + 1) - ———————— = 0 </em></h3><h3><em> 2 4 </em></h3><h3 /><h3><em> x
</em></h3><h3><em> Simplify —
</em></h3><h3><em> 2</em></h3><h3 /><h3 /><h3><em> x (x - 24)
</em></h3><h3><em> (— + 1) - ———————— = 0 </em></h3><h3><em> 2 4 </em></h3><h3 /><h3><em>Adding a whole to a fraction
</em></h3><h3 /><h3><em>Rewrite the whole as a fraction using 2 as the denominator :
</em></h3><h3 /><h3><em> 1 1 • 2
</em></h3><h3><em> 1 = — = —————
</em></h3><h3><em> 1 2 </em></h3><h3 /><h3><em> Adding up the two equivalent fractions
</em></h3><h3 /><h3><em> x + 2 x + 2
</em></h3><h3><em> ————— = —————
</em></h3><h3><em> 2 2 </em></h3><h3 /><h3><em> (x + 2) (x - 24)
</em></h3><h3><em> ——————— - ———————— = 0 </em></h3><h3><em> 2 4 </em></h3><h3 /><h3><em>Find the Least Common Multiple
</em></h3><h3 /><h3><em> The left denominator is : 2 </em></h3><h3 /><h3><em> The right denominator is : 4 </em></h3><h3 /><h3><em> Number of times each prime factor
</em></h3><h3><em> appears in the factorization of:
</em></h3><h3><em> Prime </em></h3><h3><em> Factor Left </em></h3><h3><em> Denominator Right </em></h3><h3><em> Denominator L.C.M = Max </em></h3><h3><em> {Left, Right} </em></h3><h3><em>2 1 2 2
</em></h3><h3><em> Product of all </em></h3><h3><em> Prime Factors 2 4 4
</em></h3><h3 /><h3><em> Least Common Multiple:
</em></h3><h3><em> 4 </em></h3><h3 /><h3 /><h3><em>Calculate multipliers for the two fractions
</em></h3><h3 /><h3 /><h3><em> Denote the Least Common Multiple by L.C.M </em></h3><h3><em> Denote the Left Multiplier by Left_M </em></h3><h3><em> Denote the Right Multiplier by Right_M </em></h3><h3><em> Denote the Left Deniminator by L_Deno </em></h3><h3><em> Denote the Right Multiplier by R_ Deno </em></h3><h3 /><h3><em> Left_ M = L.C.M / L_ Deno = 2
</em></h3><h3 /><h3><em> Right_ M = L.C.M / R_Deno = 1</em></h3><h3 /><h3><em> Rewrite the two fractions into equivalent fractions
</em></h3><h3 /><h3><em>Two fractions are called equivalent if they have the same numeric value.
</em></h3><h3 /><h3><em>For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
</em></h3><h3 /><h3><em>To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
</em></h3><h3 /><h3><em> L. Mult. • L. Num. (x+2) • 2
</em></h3><h3><em> —————————————————— = —————————
</em></h3><h3><em> L.C.M 4
</em></h3><h3 /><h3><em> R. Mult. • R. Num. ( x-24)
</em></h3><h3><em> —————————————————— = ——————
</em></h3><h3><em> L.C.M 4 </em></h3><h3 /><h3><em>Adding up the two equivalent fractions
</em></h3><h3 /><h3><em> (x+2) • 2 - ((x-24)) x + 28
</em></h3><h3><em> ———————————————————— = ——————
</em></h3><h3><em> 4 4 </em></h3><h3><em> </em></h3><h3><em> x + 28
</em></h3><h3><em> —————— = 0 </em></h3><h3><em> 4 </em></h3><h3 /><h3 /><h3><em>When a fraction equals zero ...
</em></h3><h3><em>Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.
</em></h3><h3 /><h3><em>Now, to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.
</em></h3><h3 /><h3><em>Here's how:
</em></h3><h3 /><h3><em> x+28
</em></h3><h3><em> ———— • 4 = 0 • 4
</em></h3><h3><em> 4
</em></h3><h3><em>Now, on the left hand side, the 4 cancels out the denominator, while, on the right hand side, zero times anything is still zero.
</em></h3><h3 /><h3><em>The equation now takes the shape :
</em></h3><h3><em> x+28 = 0</em></h3><h3 /><h3><em>Solve : x+28 = 0 </em></h3><h3 /><h3><em> Subtract 28 from both sides of the equation : </em></h3><h3><em> x = -28</em></h3><h3 /><h3 /><h3 /><h3 /><h3>I hope it is helpful?</h3>