The slope of y = 3x - 4 on the interval [2, 5] is 3 and the slope of y = 2x^2-4x - 2 on the interval [2, 5] is 10
<h3>How to determine the slope?</h3>
The interval is given as:
x = 2 to x = 5
The slope is calculated as:
<u>16. y = 3x - 4</u>
Substitute 2 and 5 for x
y = 3*2 - 4 = 2
y = 3*5 - 4 = 11
So, we have:
Divide
m = 3
Hence, the slope of y = 3x - 4 on the interval [2, 5] is 3
<u>17. y = 2x^2-4x - 2</u>
Substitute 2 and 5 for x
y = 2 * 2^2 - 4 * 2 - 2 = -2
y = 2 * 5^2 - 4 * 5 - 2 = 28
So, we have:
Divide
m = 10
Hence, the slope of y = 2x^2-4x - 2 on the interval [2, 5] is 10
Read more about slopes at:
brainly.com/question/3605446
#SPJ1
I think it represents where something is starting from, like something growing up (a chart with rising numbers)
Answer:
40
Step-by-step explanation:
(2/5)*n - 6 = 10 Add 6 to both sides
(2/5)*n - 6 + 6 = 10 + 6 Combine
(2/5)*n = 16 Multiply both sides by 5/2
(5/2)(2/5)n = 16*(5/2)
n = 80 / 2
n = 40
The answer is y=-4/7x+7. You simply substitute in the given numbers. -4/7 for the slope (m) and 7 for the y-intercept (b).
(a) First find the intersections of
and
:
So the area of
is given by
If you're not familiar with the error function
, then you will not be able to find an exact answer. Fortunately, I see this is a question on a calculator based exam, so you can use whatever built-in function you have on your calculator to evaluate the integral. You should get something around 0.5141.
(b) Find the intersections of the line
with
.
So the area of
is given by
which is approximately 1.546.
(c) The easiest method for finding the volume of the solid of revolution is via the disk method. Each cross-section of the solid is a circle with radius perpendicular to the x-axis, determined by the vertical distance from the curve
and the line
, or
. The area of any such circle is
times the square of its radius. Since the curve intersects the axis of revolution at
and
, the volume would be given by