when its placed in the stomach it will raise
Answer:
2040 cm-1
Explanation:
The vibrations frequency is obtained from;
v=1/2πc √k/μ
Where;
k= force constant = 240kgs-2
μ= reduced mass = 1.627×10^-27 kg
c= speed of light= 3×10^10cms-1
v= 1/2×3.142×3×10^10√240/1.627×10^-27
v= 5.3×10^-12 × 3.84×10^14
v= 20.4×10^2
v= 2040 cm-1
Answer:
Mitochondria are abundantly present in mammalian cells. Their fraction varies from tissue to tissue, ranging from <1% (volume) in white blood cells to 35% in heart muscle cells. However, mitochondria should not be thought of as single entities, but rather a dynamic network that continuously undergoes fission and fusion processes. In skeletal muscle, mitochondria exist as a reticular membrane network. The subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria are located in distinct subcellular regions, and they possess subtle differences in biochemical and functional properties that are characterized by their anatomical locations. SS mitochondria lie directly beneath the sarcolemmal membrane and the IMF mitochondria are located in close contact with the myofibril. Their different properties are likely to influence their capacity for adaptation. SS mitochondria account for 10-15% of the mitochondrial volume and this population has been shown to be more susceptible to adaptation than the IMF mitochondria. However, the IMF mitochondria were found to have higher rates of protein synthesises, enzyme activities and respiration (1).
Explanation:
Answer : The correct expression for equilibrium constant will be, ![K=[O_2]^5](https://tex.z-dn.net/?f=K%3D%5BO_2%5D%5E5)
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K=[O_2]^5](https://tex.z-dn.net/?f=K%3D%5BO_2%5D%5E5)
Therefore, the correct expression for equilibrium constant will be, ![K=[O_2]^5](https://tex.z-dn.net/?f=K%3D%5BO_2%5D%5E5)