Answer:
x = √(10)/2
Step-by-step explanation:
Here, we want to get the measure of the side marked x
what we have is an isosceles right triangle since the two acute angles of the right triangle are 45 degrees each
Hence, the other last side will measure x too
Mathematically, according to Pythagoras’; the square of the hypotenuse equals the sum of the squares of the two other sides
Thus;
x^2 + x^2 = (√5)^2
2x^2 = 5
x^2 = 5/2
x = √(5/2)
x = √5/√2
Rationalizing the denominator;
x = (√2 * √5)/(√2 * √2)
x = √10/2
Answer:
Here is how you do it step by step.
Step-by-step explanation:
Step 1: Simplify each side, if needed.
Step 2: Use Add./Sub. Properties to move the variable term to one side and all other terms to the other side.
Step 3: Use Mult./Divide
Step 4: Check your answer.
I find this is the quickest and easiest way to approach linear equations.
Example 6: Solve for the variable.
<u>Hope this helps!</u>
Well think about it ....
1 yard = 3 ft so you'd do 3 times 4
1 foot = 12 inches so it'd be half of a foot
I actually think its b cause it can't be d (thats obvious) yh........but i might be wrong
<h3><u>Solution</u></h3>
<u>Given </u><u>:</u><u>-</u>
- Perimeter of rectangle = 72 cm
- The length is 3 more than twice the width.
<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>:</u><u>-</u>
<h3 /><h3>
<u>Explantion</u></h3>
<u>Using </u><u>Formula</u>

<u>Let,</u>
- Length of Rectangle = x cm
- Breadth of Rectangle = y cm
<u>According</u><u> to</u><u> question</u><u>,</u>
==> perimeter of Rectangle = 72
==> 2(x+y) = 72
==> x + y = 72/2
==> x + y = 36_________________(1)
<u>Again,</u>
==> x = 2y + 3
==> x - 2y = 3__________________(2)
<u>Subtract</u><u> </u><u>equ(</u><u>1</u><u>)</u><u> </u><u>&</u><u> </u><u>equ(</u><u>2</u><u>)</u>
==> y + 2y = 36 - 3
==> 3y = 33
==> y = 33/3
==> y = 11
<u>keep </u><u>in </u><u>equ(</u><u>1</u><u>)</u>
==> x - 2×11 = 3
==> x = 3 + 22
==> x = 25
<h3><u>Hence</u></h3>
- <u>Length</u><u> of</u><u> </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u> </u><u>cm</u>
- <u>Width </u><u>of </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u> </u><u>cm</u>
<h3>
<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u></h3>
<h3 />