Check the picture below, so the parabola looks more or less like so.
the vertex is always half-way between the focus point and the directrix, and since the parabola is opening downwards, the "p" distance is negative.
![\textit{vertical parabola vertex form with focus point distance} \\\\ 4p(y- k)=(x- h)^2 \qquad \begin{cases} \stackrel{vertex}{(h,k)}\qquad \stackrel{focus~point}{(h,k+p)}\qquad \stackrel{directrix}{y=k-p}\\\\ p=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix}\\\\ \stackrel{"p"~is~negative}{op ens~\cap}\qquad \stackrel{"p"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Ctextit%7Bvertical%20parabola%20vertex%20form%20with%20focus%20point%20distance%7D%20%5C%5C%5C%5C%204p%28y-%20k%29%3D%28x-%20h%29%5E2%20%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5Cqquad%20%5Cstackrel%7Bfocus~point%7D%7B%28h%2Ck%2Bp%29%7D%5Cqquad%20%5Cstackrel%7Bdirectrix%7D%7By%3Dk-p%7D%5C%5C%5C%5C%20p%3D%5Ctextit%7Bdistance%20from%20vertex%20to%20%7D%5C%5C%20%5Cqquad%20%5Ctextit%7B%20focus%20or%20directrix%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22p%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22p%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

-3x = 21
Divide -3 from both sides and you get x = -7
1/3x = 6
Divide 1/3 from both sides and you get x = 18
-1/2x = -7
Divide -1/2 from both sides and you get x = 14 (you get a positive answer from 2 negatives)
Dividing 1/3 is just multiplying by 3, and dividing -1/2 is just multiplying by -2
Answer:
2587mm^3 approx!
Step-by-step explanation:
first you divide the nut into 6 part(in triangle now, by joining centre to each edge)
let's take one part of the triangular shape then area of that part can be found by using 1/2×base×height
i.e, 1/2×13×15=97.5(mm^2)
now when we consider depth of that traingular part,we will get volume of that part as area×depth
i.e, 97.5×6=585(mm^3)
now volume of all the 6 triangular part is 585×6=3510(in mm^3)
now take circular cavity in consideration, it's volume will be π(7^2)6=923(mm^3) approximately
now reqired volume will be volume of that hexagonal part minus that of circular cavity
=3510-923
=2587mm^3
✌️
Answer:
para un diámetro de 40 cm el perímetro es de 125.66 cm,
Answer:
Please help me
Step-by-step explanation: