Answer:
1.
centre(h,k)=(-13,9)
radius (r)=6
we have
equation of the circle is
(x-h)²+(y-k)²=r²
(x+13)²+(y-9)²=6²
x²+26x+169+y²-18y+81=36
x²+y²+26x-18y+169+81-36=0
x²+y²+26x-18y +214=0
is a required equation of the circle.
2.
centre(h,k)=(1,-1)
radius (r)=11
we have
equation of the circle is
(x-h)²+(y-k)²=r²
(x-1)²+(y+1)²=11²
x²-2x+1+y²+2y+1=121
x²+y²-2x+2y=121-2
x²+y²-2x+2y=119
is a required equation of the circle.
Answer:
graph these
y = 2x + 2
y = 2x - 3
Step-by-step explanation:
2x - y = -2
2x - y = 3
convert to y intercept form
first
2x - y = -2
-y = -2x - 2
y = 2x + 2
second
2x - y = 3
-y = -2x + 3
y = 2x - 3
you are left with
y = 2x + 2
y = 2x - 3
i cannot graph these for you, but i assume you know how, there is no solution because the lines are parallel
The greatest whole possible whole number length of the unknown side is 9 inches.
<h3>How to identify if a triangle is acute?</h3>
Let us have:
H = biggest side of the triangle
And let we get A and B as rest of the two sides.
Then we get:
If

then the triangle is acute
Two sides of an acute triangle measure as 5 inches and 8 inches
The length of the longest side is unknown.
We have to find the length of the unknown side
WE know that the longest side of any triangle is a hypotenuse
For an acute triangle we know:

Here in this sum,
a = 5 inches
b = 8 inches
c = ?
Substituting we get,

c < 9
Hence, The greatest whole possible whole number length of the unknown side is 9 inches.
Learn more about angles;
brainly.com/question/14489478
#SPJ1
Answer:
more than what she has
Step-by-step explanation: