Answer: A. 
B. A'(5) = 1.76 cm/s
Step-by-step explanation: <u>Rate</u> <u>of</u> <u>change</u> measures the slope of a curve at a certain instant, therefore, rate is the derivative.
A. Area of a circle is given by

So to find the rate of the area:


Using 

Then
![\frac{dA}{dt}=2.\pi.r.[\frac{726}{(t+11)^{3}}]](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7Bdt%7D%3D2.%5Cpi.r.%5B%5Cfrac%7B726%7D%7B%28t%2B11%29%5E%7B3%7D%7D%5D)
![\frac{dA}{dt}=2.\pi.[3-\frac{363}{(t+11)^{2}}].\frac{726}{(t+11)^{3}}](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7Bdt%7D%3D2.%5Cpi.%5B3-%5Cfrac%7B363%7D%7B%28t%2B11%29%5E%7B2%7D%7D%5D.%5Cfrac%7B726%7D%7B%28t%2B11%29%5E%7B3%7D%7D)
Multipying and simplifying:

The rate at which the area is increasing is given by expression
.
B. At t = 5, rate is:




At 5 seconds, the area is expanded at a rate of 1.76 cm/s.
Answer:
684
Step-by-step explanation:
57 times 12
12 weeks times 57 pages= 684 pages in 12 weeks
Answer:
a triangle;
Three faces of the cube meet to form the vertex, so the cross section is a two-dimensional figure with three sides
Step-by-step explanation:
we have a maximum at t = 0, where the maximum is y = 30.
We have a minimum at t = -1 and t = 1, where the minimum is y = 20.
<h3>
How to find the maximums and minimums?</h3>
These are given by the zeros of the first derivation.
In this case, the function is:
w(t) = 10t^4 - 20t^2 + 30.
The first derivation is:
w'(t) = 4*10t^3 - 2*20t
w'(t) = 40t^3 - 40t
The zeros are:
0 = 40t^3 - 40t
We can rewrite this as:
0 = t*(40t^2 - 40)
So one zero is at t = 0, the other two are given by:
0 = 40t^2 - 40
40/40 = t^2
±√1 = ±1 = t
So we have 3 roots:
t = -1, 0, 1
We can just evaluate the function in these 3 values to see which ones are maximums and minimums.
w(-1) = 10*(-1)^4 - 20*(-1)^2 + 30 = 10 - 20 + 30 = 20
w(0) = 10*0^4 - 20*0^2 + 30 = 30
w(1) = 10*(1)^4 - 20*(1)^2 + 30 = 20
So we have a maximum at x = 0, where the maximum is y = 30.
We have a minimum at x = -1 and x = 1, where the minimum is y = 20.
If you want to learn more about maximization, you can read:
brainly.com/question/19819849