4 is the X variable so it means it is 4 weeks after the kitten is born.
14 is the Y variable so it means it is 14 ounces after 4 (this is the X variable) weeks.
I'm reading this as

with

.
The value of the integral will be independent of the path if we can find a function

that satisfies the gradient equation above.
You have

Integrate

with respect to

. You get


Differentiate with respect to

. You get
![\dfrac{\partial f}{\partial y}=\dfrac{\partial}{\partial y}[x^2e^{-y}+g(y)]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5Bx%5E2e%5E%7B-y%7D%2Bg%28y%29%5D)


Integrate both sides with respect to

to arrive at



So you have

The gradient is continuous for all

, so the fundamental theorem of calculus applies, and so the value of the integral, regardless of the path taken, is
Remember PEMDAS - parentheses, exponents, multiply, divide, add, subtract
because multiply come before subtract, your first step would be 1/2 x 2 = 1
next, you subtract -> 15 - 1 = 14
14 is your answer
In the question it is already given that Eric drove for 439.92 miles on 15.6 gallons. It is required to find the distance traveled on 39.7 gallons of gas. Also we have to find the answer to the nearest hundredth.
Then,
In 15.6 gallons Eric can drive for a distance = 439.92 miles
In 39.7 gallons Eric can drive for a distance = [(439.92/15.6) * 39.7] miles
= 1119.54 miles
So the total distance traveled by Eric is 1120 miles with 39.7 gallons of gas. The answer has been calculated to the nearest hundredth.