Based on the statement below, if d is the midpoint of the segment AC, the length of the segment AB is 4.5cm.
<h3>What is the line segment about?</h3>
in the question given,
AC = 3cm,
Therefore, AD and DC will be = 1.5cm segments each.
We are given C as the midpoint of segment DB.
So CB = 1.5cm.
The representation of the line segment is:
A-----------D------------C-------------B
1.5 1.5 1.5
Since AD, DC and CB are each 1.5cm segments. Then the equation will be:
= 1.5 + 1.5 + 1.5
= 4.5
Therefore, The length of the segment AB is 4.5cm.
See full question below
If D is the midpoint of the segment AC and C is the midpoint of segment DB , what is the length of the segment AB , if AC = 3 cm.
Learn more about midpoint from
brainly.com/question/10100714
#SPJ1
DB is a median (given). It goes from vertex point D to midpoint B.
The point B is the midpoint of segment AC. So B cuts AC into two equal halves: AB and AC
Meaning AB = AC
AC = AB+BC ... segment addition postulate
AC = AB+AB ... substitution; replace BC with AB (valid because AB = AC)
AC = 2*AB
2*AB = AC
2*AB = 50 ... substitution; replace AC with 50
2*AB/2 = 50/2 ... divide both sides by 2
AB = 25 which is the answer
So, the definite integral 
Given that
We find

<h3>Definite integrals </h3>
Definite integrals are integral values that are obtained by integrating a function between two values.
So, 
So, ![\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - \int\limits^1_0 {6x^{2} } \, dx \\= 4[x]^{1}_{0} - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1] - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6\int\limits^1_0 {x^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%206x%5E%7B2%7D%20%29%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B4%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%204%5B1%20-%200%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%5B1%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx)
Since
,
Substituting this into the equation the equation, we have

So, 
Learn more about definite integrals here:
brainly.com/question/17074932