¿ cuál es la pregunta que intentas hacer?
Answer:
Part A: 36 MBq; Part B: 18 MBq
Explanation:
The half-life is the time it takes for half the substance to disappear.
The activity decreases by half every half-life
A =Ao(½)^n, where n is the number of half-lives.
Part A
3.0 da = 1 half-life
A = Ao(½) = ½ × 72 MBq = 36 MBq
Part B
6.0 da = 2 half-lives
A = Ao(½)^2 = ¼ × 72 MBq = 18 MBq
Explanation:
An ionic equation will be the one in which all the participating species will be present as ions.
The given reaction will be as follows.

Balancing this equation by multiplying
by 2 and
by 3 on reactant side. Whereas multiply KBr by 6 on product side.

Hence, the net ionic equation will be as follows.

As both
and
are spectator ions. Hence, the net ionic equation will be as follows.
C. PH3 represents a compound commonly known as phosphine, whose IUPAC name is phosphorus trihydride.
<h3>What type of bond is PH3?</h3>
The electronegativity of PH3 found in the Periodic Table of the Period attracts covalent electron pairs and creates covalent bonds. However, because the electrons are not bound, asymmetrical rate distribution occurs. Therefore, PH3 is a polar molecule with a non-polar covalent bond and currently has no polar bond.
<h3 /><h3>What defines a covalent bond?</h3>
A covalent bond consists of sharing one or more electron pairs between two atoms. These electrons are attracted to two nuclei at the same time. Covalent bonds are formed when the difference in electronegativity between two atoms is too small for electron transfer to form ions.
Click here for more information on covalent bonds brainly.com/question/12732708
# SPJ10
Answer:
Nitrogen is limiting reactant while hydrogen is in excess.
Explanation:
Given data:
Mass of N₂ = 25 g
Mass of H₂ = 25 g
Mass of ammonia formed = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of Nitrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 28 g/mol
Number of moles = 0.89 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 25 g/ 2 g/mol
Number of moles = 12.5 mol
Now we will compare the moles of both reactant with ammonia.
H₂ ; NH₃
3 : 2
12.5 : 2/3×12.5 = 8.3
N₂ ; NH₃
1 : 2
0.89 : 2×0.89 = 1.78
The number of moles of ammonia produced by nitrogen are less thus nitrogen is limiting reactant while hydrogen is in excess.