The mass of carbon dioxide that would be made by reacting 30 grams C2H6 with 320 grams O2 will be 80 grams
From the balanced equation of the reaction:

The mole ratio of C2H6 to O2 is 2:7.
- Mole of 30 grams C2H6 = mass/molar mass
= 30/30
= 1 mole
- Mole of 320 grams O2 = 320/32
= 10 moles
Thus, C2H6 is the limiting reactant.
Mole ratio of C2H6 to CO2 according to the equation = 1:2
Since the mole of C2H6 is 1, the equivalent mole of CO2 would, therefore, be 2.
Mass of 2 moles CO2 = mole x molar mass
= 2 x 44
= 88 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886?referrer=searchResults
(I know this is late so hopefully other people find it helpful)
<u>Answer</u>: Solid Cu
Since this is a <u>voltaic cell</u>:
<u>Copper</u> is the cathode, therefore having a positive charge.
<u>Zinc</u> is the anode, therefore having a negative charge.
(Also, I took the exam and it's correct; good luck everyone!)
Answer:- The natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
Solution:- Average atomic mass of an element is calculated from the atomic masses of it's isotopes and their abundances using the formula:
Average atomic mass = mass of first isotope(abundance) + mass of second isotope(abundance)
We have been given with atomic masses for
and
as 150.919860 and 152.921243 amu, respectively. Average atomic mass of Eu is 151.964 amu.
Sum of natural abundances of isotopes of an element is always 1. If we assume the abundance of
as n then the abundance of
would be 1-n .
Let's plug in the values in the formula:

151.964=150.919860n+152.921243-152.921243n
on keeping similar terms on same side:


negative sign is on both sides so it is canceled:



The abundance of
is 0.478 which is 47.8%.
The abundance of
is = 
= 0.522 which is 52.2%
Hence, the natural abundance of
is 0.478 or 47.8% and
is 0.522 or 52.2% .
I believe <span>erosion is what you are looking for..</span>
Well you can freeze it to make it a solid then you can melt it to make it a liquid
I hope this helps you.