Answer:
false
in chemical reaction element doesnot change into another
Explanation:
Answer:
The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens, but also to metals such as sodium or magnesium. ... All four of these electrons are counted in both the carbon octet and the oxygen octet, so that both atoms are considered to obey the octet rule.
<span>Solubility product constant (Ksp) is </span>applied to the saturated ionic solutions<span> which are in equilibrium with its
solid form. The solid is partially dissociated into its ions.</span><span>
For the BaF, the dissociation as follows;
BaF</span>₂(s) ⇄ Ba²⁺(aq)
+ 2F⁻(aq)
<span>
Hence,
Ksp = [Ba</span>²⁺(aq)] [F⁻(aq)]²
Answer:
See explanation and picture below
Explanation:
First, in the case of methyloxirane (Also known as propilene oxide) the mechanism that is taking place there is something similar to a Sn2 mechanism. Although a Sn2 mechanism is a bimolecular substitution taking place in only step, the mechanism followed here is pretty similar after the first step.
In both cases, the H atom of the HBr goes to the oxygen in the molecule. You'll have a OH⁺ in both. However, in the case of methyloxirane the next step is a Sn2 mechanism step, the bromide ion will go to the less substitued carbon, because the methyl group is exerting a steric hindrance. Not a big one but it has a little effect there, that's why the bromide will rather go to the carbon with more hydrogens. and the final product is formed.
In the case of phenyloxirane, once the OH⁺ is formed, the next step is a Sn1 mechanism. In this case, the bond C - OH⁺ is opened on the side of the phenyl to stabilize the OH. This is because that carbon is more stable than the carbon with no phenyl. (A 3° carbon is more stable than a 2° carbon). Therefore, when this bond opens, the bromide will go there in the next step, and the final product is formed. See picture below for mechanism and products.
Answer:
D. In both, vibrations occur in a parallel direction to the direction of the wave.
Explanation:
It is not true that in both mechanical and electromagnetic waves, vibrations occur in parallel direction to the direction of the wave.
As with all waves, they are disturbances that transfers energy without moving the materials of the medium.
- Electromagnetic waves have only one way of propagation which is a vibration in both parallel and longitudinal direction.
- Mechanical waves can be propagated either in a parallel direction or longitudinal direction and not both.