<span><span>Mn<span>O<span>2<span>(s)</span></span></span>+<span>H<span>2<span>(g)</span></span></span>→Mn<span>O<span>(s)</span></span>+<span>H2</span><span>O<span>(g)</span></span></span></span>
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
The nails can puncture the tires of the vehicles making them deflated after a while. The process of tire deflation due to a puncture is due to the process called an effusion. Thus, option c is correct.
<h3>What is effusion?</h3>
Effusion is the process that defines the escape of the fluids or gases from a system through an outlet with a small diameter compared to the mean free path of the molecules.
When a tire is punctured then the gas from the tire starts to move out through the hole through effusion. This leads to deflation of the tire after some time as all the gas present inside had moved out completely.
Therefore, option c. a punctured tire deflates due to effusion.
Learn more about effusion here:
brainly.com/question/2823560
#SPJ1