Answer:
People may seem and act normally during the fugue, or they may appear moderately bewildered and draw no notice. When the fugue is over, however, people are thrown into a new scenario with no recall of how they got there or what they were doing.
Explanation:
6N
Explanation:
you times 3 and 2 to get six.
Explanation:
Relation between entropy change and specific heat is as follows.

The given data is as follows.
mass = 500 g,
= 24.4 J/mol K
= 500 K,
= 250 K
Mass number of copper = 63.54 g /mol
Number of moles = 
= 
= 7.86 moles
Now, equating the entropy change for both the substances as follows.
= ![7.86 \times 24.4 \times [500 -T_{f}]](https://tex.z-dn.net/?f=7.86%20%5Ctimes%2024.4%20%5Ctimes%20%5B500%20-T_%7Bf%7D%5D)

= 750
So,
= 
- For the metal block A, change in entropy is as follows.

= ![24.4 log [\frac{375}{500}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B500%7D%5D)
= -3.04 J/ K mol
- For the block B, change in entropy is as follows.

= ![24.4 log [\frac{375}{250}]](https://tex.z-dn.net/?f=24.4%20log%20%5B%5Cfrac%7B375%7D%7B250%7D%5D)
= 4.296 J/Kmol
And, total entropy change will be as follows.
= 4.296 + (-3.04)
= 1.256 J/Kmol
Thus, we can conclude that change in entropy of block A is -3.04 J/ K mol and change in entropy of block B is 4.296 J/Kmol.
Acids react with metals to form hydrogen gas.
Answer:
0.01 M
Explanation:
The chemist is performing a serial dilution in order tyo obtain the calibration curve for the instrument.
First we must obtain the concentration of the solution in the 250ml flask from
C1V1 = C2V2
Where;
C1 = concentration of the stock solution
V1 = volume of the stock solution
C2 = concentration of the diluted solution
V2= volume of the diluted solution
2.61 × 10 = C2 × 250
C2 = 2.61 × 10/250
C2 = 0.1 M
Hence for solution in 100ml flask;
0.1 × 10 = C2 × 100
C2 = 0.1 × 10/100
C2 = 0.01 M