If it is 400 m/s then it's the answer
v= s/t
400m/s= s/11700 195×60=11,700 sec
s= 400 × 11700
s= 4,680,000 m/s ^2
11,700×400=4,680,000
Answer:$920
Step-by-step explanation:
Since the variation is joint, I=KPr where k is the constant of proportionality.
Plugging in the values of I=$375, P=$1500 and r=5% in the equation I=KPr, the value of k can be calculated. Hence, the formula connecting the three quantities (I,P and r) can be generated.
375 = K (1500×5)
Making k the subject of change,
K = 375/(1500×5)
K=1/20
Formula connecting the three quantities :I =Pr/20
when P=$2300, r=8%,
I = (2300×8)/20
I = $920
Would it be C? im not too sure but thats my guess =)
Answer:
See below
Step-by-step explanation:
<u>We can estimate the dividend and divisor as follows:</u>
- 635943 ÷ 77 =
- 636000 ÷ 80 =
- 7950 ≈ 8000
Estimate is 8000
Answer:
The claim that the current work teams can build room additions quicker than the time allotted for by the contract has strong statistical evidence.
Step-by-step explanation:
We have to test the hypothesis to prove the claim that the work team can build room additions quicker than the time allotted for by the contract.
The null hypothesis is that the real time used is equal to the contract time. The alternative hypothesis is that the real time is less thant the allotted for by the contract.

The significance level, as a storng evidence is needed, is α=0.01.
The estimated standard deviation is:

As the standard deviation is estimated, we use the t-statistic with (n-1)=15 degrees of freedom.
For a significance level of 0.01, right-tailed test, the critical value of t is t=2.603.
Then, we calculate the t-value for this sample:

As the t-statistic lies in the rejection region, the null hypothesis is rejected. The claim that the current work teams can build room additions quicker than the time allotted for by the contract has strong statistical evidence.