(x+a)^4 = ^4C_0 x^4 + ^4C_1 x^{4-1} a + ^4C_2x^{4-2}a^2 + ^4C_3x^{4-3}a^3 + ^4C_4x^{4-4}a^4
= x^4 + 4x^3a + 6x^2a^2 + 4xa^3 + a^4
Answer:
Surface Area is 56π cm²
Step-by-step explanation:
The area for a cylinder's surface area is
a=2πrh+2πr²
The cylinder base's radius is 4 cm
The cylinder's height is 3 cm
Putting into the equation:
a=2×π×4×3+2×π×4²
a=2π×4×3+2×π×4²
a=8π×3+2×π×4²
a=24π+2×π×4²
a=24π+2×π×16
a=24π+2π×16
a=24π+32π
a=56π
The surface area of the cylinder is 56π cm².
Solve for e
d = 1/e + 1/f
Move 1/f to the left side of the = sign
d - 1/f = 1/e
Multiply each side by e
e(d - 1/f) = e(1/e)
e(d - 1/f) = 1
Divide out (d - 1/f)
e(d - 1/f) / (d - 1/f) = 1 / (d - 1/f)
e = 1 / (d - 1/f)
(16)/(2)*4-(10)/(5)+6= 36