1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
9

PLEASEEEE HELP ME

Mathematics
1 answer:
AURORKA [14]3 years ago
7 0

Answer:

1- BE

2- CF

3 - AD

4 - B

5 -

6 - A

7- S

8- D

9- CDF / BDE

10 - C B A

11 - D

12 -DC / DF

You might be interested in
Can someone helpp me with this i will give brainlest :)
marta [7]

Answer:

Step-by-step explanation:

1slice=280 and 6 slices so 280x6 so 0x6=0 then 80x6=6+6x4=48x10=480
then 200x6= 6x2=12x100=1200

add all 0+480+1200=1680

sry i'm not used to showing work i usually do it all in my head

8 0
1 year ago
The lengths of the four sides of a quadrilateral (in centimeters) are consecutive
My name is Ann [436]

The longest of the four side lengths is 24 cm

<h3>How to find the value of the longest of the four side lengths?</h3>

The given parameters are:

Perimeter, P = 90 cm

The lengths are consecutive integers

Let the smallest be

Smallest = x

So, we have

P = x + x + 1 + x + 2 + x + 3

Evaluate the like terms

P = 4x + 6

Substitute P = 90 cm in P = 4x + 6

4x + 6 = 90

Subtract 6 from both sides

4x = 84

Divide by 4

x = 21

The longest side is

Longest = x + 3

This gives

Longest = 21 + 3

Evaluate

Longest = 24

Hence, the longest of the four side lengths is 24 cm

Read more about perimeter at:

brainly.com/question/19819849

#SPJ1

6 0
2 years ago
What is the solution of -3 = x + 5
zhenek [66]

-8         because -8 +5=-3 that is the equation used to get the solution


7 0
3 years ago
7.2 Given a test that is normally distributed with a mean of 100 and a standard deviation of 10, find: (a) the probability that
kompoz [17]

Answer:

a)

<em>The probability that a single score drawn at random will be greater than 110  </em>

<em>P( X > 110) = 0.1587</em>

<em>b) </em>

<em>The probability that a sample of 25 scores will have a mean greater than 105</em>

<em>  P( x> 105) = 0.0062</em>

<em>c) </em>

<em>The probability that a sample of 64 scores will have a mean greater than 105</em>

<em> P( x⁻> 105)  = 0.002</em>

<em></em>

<em>d) </em>

<em> The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105</em>

<em>    P( 95 ≤ X≤ 105) = 0.9544</em>

<em></em>

Step-by-step explanation:

<u><em>a)</em></u>

Given mean of the Normal distribution 'μ'  = 100

Given standard deviation of the Normal distribution 'σ' = 10

a)

Let 'X' be the random variable of the Normal distribution

let 'X' = 110

Z = \frac{x-mean}{S.D} = \frac{110-100}{10} =1

<em>The probability that a single score drawn at random will be greater than 110</em>

<em>P( X > 110) = P( Z >1)</em>

                = 1 - P( Z < 1)

               =  1 - ( 0.5 +A(1))

               = 0.5 - A(1)

               = 0.5 -0.3413

              = 0.1587

b)

let 'X' = 105

Z = \frac{x-mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{25} } } = 2.5

<em>The probability that a single score drawn at random will be greater than 110</em>

<em>  P( x> 105) = P( z > 2.5)</em>

<em>                    = 1 - P( Z< 2.5)</em>

<em>                    = 1 - ( 0.5 + A( 2.5))</em>

<em>                   = 0.5 - A ( 2.5)</em>

<em>                  = 0.5 - 0.4938</em>

<em>                  = 0.0062</em>

<em>The probability that a single score drawn at random will be greater than 105</em>

<em>  P( x> 105) = 0.0062</em>

<em>c) </em>

let 'X' = 105

Z = \frac{x-mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{64} } } =  4

<em>The probability that a single score drawn at random will have a mean greater than 105</em>

<em>  P( x> 105) = P( z > 4)</em>

<em>                    = 1 - P( Z< 4)</em>

<em>                    = 1 - ( 0.5 + A( 4))</em>

<em>                   = 0.5 - A ( 4)</em>

<em>                  = 0.5 - 0.498</em>

<em>                  = 0.002</em>

<em> The probability that a sample of 64 scores will have a mean greater than 105</em>

<em> P( x⁻> 105)  = 0.002</em>

<em>d) </em>

<em>Let  x₁ = 95</em>

Z = \frac{x_{1} -mean}{\frac{S.D}{\sqrt{n} } } = \frac{95-100}{\frac{10}{\sqrt{16} } } =  -2

<em>Let  x₂ = 105</em>

Z = \frac{x_{1} -mean}{\frac{S.D}{\sqrt{n} } } = \frac{105-100}{\frac{10}{\sqrt{16} } } =  2

The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105

P( 95 ≤ X≤ 105) = P( -2≤z≤2)

                         = P(z≤2) - P(z≤-2)

                        = 0.5 + A( 2) - ( 0.5 - A( -2))

                      = A( 2) + A(-2)       (∵A(-2) =A(2)

                     =  A( 2) + A(2)  

                    = 2 × A(2)

                  = 2×0.4772

                  = 0.9544

<em> The probability that the mean of a sample of 16 scores will be either less than 95 or greater than 105</em>

<em>    P( 95 ≤ X≤ 105) = 0.9544</em>

<em>    </em>

7 0
3 years ago
Giving out brainlst to whoever can answer this
Harrizon [31]
100 - 5d + 10d = 130

5 x 20 = 100
5 x -d = -5d
3 0
4 years ago
Other questions:
  • Evaluate f(x)=12x+1 when x=-2,0,and 3
    11·1 answer
  • Elvin read 4/7 of the pages in his book. He has 226 pages left to read. How many pages has he read already?
    15·1 answer
  • Factor 2x^4 + 3x^3 +14x^2 +24x – 16
    5·1 answer
  • Afla un numar,stiind ca: a)jumatatea treimii lui este 25; b)sfertul jumatatii lui este 48; c)treimea sfertului sau,marita cu 17
    13·1 answer
  • Plz help it’s due tomorrow
    13·1 answer
  • A $695 bike costs about how much more than a $412 bike
    15·1 answer
  • What is the value of x ?
    5·2 answers
  • Dwayne bought 9 yards of wrapping paper how many inches of wrapping paper did he buy
    14·1 answer
  • Kathy decides to start a new exercise routine for 5 days. Every day, she runs for some number of minutes. She also swims for 15
    7·1 answer
  • I need help with this question please?! I'm having a hard time answering it!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!