1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reil [10]
3 years ago
7

29. Write iſ as an improper fraction, and multiply the

Mathematics
1 answer:
Alex Ar [27]3 years ago
4 0

Answer: 29 = 5/6

Step-by-step explanation:

first you would convert 1 2/3 into a improper faction. So you would multiply 1 and 3  then add 2 so 5/3 then multiply that by 1/2. You would multiply the numerators and denominators, so 5 times 1 and 3 times 2 which gives you 5/6.

You might be interested in
Write the word sentence as an equation. Then solve.
gtnhenbr [62]

The equation is   c-13=-2

The solved equation is 11

First, we must add 13 on both sides

c=11

The answer to the equation is  c=11

5 0
3 years ago
Give the equation of the circle centered at the origin and passing through the point (0,-8)
Norma-Jean [14]

Answer:

The answer to your question is x ² + y² = 64

Step-by-step explanation:

Process

1.- Find the length of the radius

C (0, 0)

P (0, -8)

d = \sqrt{(x2 - x1)^{2}+ (y2 - y1)^{2}  }

d = \sqrt{(0- 0)^{2}+ (-8 - 0)^{2}  }

d = \sqrt{64}

d = 8

2.- Find the equation of the circle

    (x - h)^{2} + (y - k)^{2} = r^{2} \\

h = 0   and k = 0

    (x - 0)^{2} + (y - 0)^{2} = 8^{2}

            x² + y² = 64      

5 0
3 years ago
When 6x^2-4x+3 is subtracted from 3x^2-2x+3 The result is
Svetach [21]
3x^2 -6x + 6 :) hope this is alright
4 0
3 years ago
Read 2 more answers
P(x) = x + 1x² – 34x + 343<br> d(x)= x + 9
Feliz [49]

Answer:

x=\frac{9}{d-1},\:P=\frac{-297d+378}{\left(d-1\right)^2}+343

Step-by-step explanation:

Let us start by isolating x for dx = x + 9.

dx - x = x + 9 - x > dx - x = 9.

Factor out the common term of x > x(d - 1) = 9.

Now divide both sides by d - 1 > \frac{x\left(d-1\right)}{d-1}=\frac{9}{d-1};\quad \:d\ne \:1. Go ahead and simplify.

x=\frac{9}{d-1};\quad \:d\ne \:1.

Now, \mathrm{For\:}P=x+1x^2-34x+343, \mathrm{Subsititute\:}x=\frac{9}{d-1}.

P=\frac{9}{d-1}+1\cdot \left(\frac{9}{d-1}\right)^2-34\cdot \frac{9}{d-1}+343.

Group the like terms... 1\cdot \left(\frac{9}{d-1}\right)^2+\frac{9}{d-1}-34\cdot \frac{9}{d-1}+343.

\mathrm{Add\:similar\:elements:}\:\frac{9}{d-1}-34\cdot \frac{9}{d-1}=-33\cdot \frac{9}{d-1} > 1\cdot \left(\frac{9}{d-1}\right)^2-33\cdot \frac{9}{d-1}+343.

Now for 1\cdot \left(\frac{9}{d-1}\right)^2 > \mathrm{Apply\:exponent\:rule}: \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c} > \frac{9^2}{\left(d-1\right)^2} = 1\cdot \frac{9^2}{\left(d-1\right)^2}.

\mathrm{Multiply:}\:1\cdot \frac{9^2}{\left(d-1\right)^2}=\frac{9^2}{\left(d-1\right)^2}.

Now for 33\cdot \frac{9}{d-1} > \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} > \frac{9\cdot \:33}{d-1} > \frac{297}{d-1}.

Thus we then get \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}+343.

Now we want to combine fractions. \frac{9^2}{\left(d-1\right)^2}-\frac{297}{d-1}.

\mathrm{Compute\:an\:expression\:comprised\:of\:factors\:that\:appear\:either\:in\:}\left(d-1\right)^2\mathrm{\:or\:}d-1 > This\: is \:the\:LCM > \left(d-1\right)^2

\mathrm{For}\:\frac{297}{d-1}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:d-1 > \frac{297}{d-1}=\frac{297\left(d-1\right)}{\left(d-1\right)\left(d-1\right)}=\frac{297\left(d-1\right)}{\left(d-1\right)^2}

\frac{9^2}{\left(d-1\right)^2}-\frac{297\left(d-1\right)}{\left(d-1\right)^2} > \mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}> \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}

\frac{9^2-297\left(d-1\right)}{\left(d-1\right)^2} > 9^2=81 > \frac{81-297\left(d-1\right)}{\left(d-1\right)^2}.

Expand 81-297\left(d-1\right) > -297\left(d-1\right) > \mathrm{Apply\:the\:distributive\:law}: \:a\left(b-c\right)=ab-ac.

-297d-\left(-297\right)\cdot \:1 > \mathrm{Apply\:minus-plus\:rules} > -\left(-a\right)=a > -297d+297\cdot \:1.

\mathrm{Multiply\:the\:numbers:}\:297\cdot \:1=297 > -297d+297 > 81-297d+297 > \mathrm{Add\:the\:numbers:}\:81+297=378 > -297d+378 > \frac{-297d+378}{\left(d-1\right)^2}

Therefore P=\frac{-297d+378}{\left(d-1\right)^2}+343.

Hope this helps!

5 0
4 years ago
A gumball machine has 220 red gumballs. If the red gumballs are 50% of the total number of gumballs, how many gumballs are in
JulijaS [17]
Answer:

440

Explanation:

If 50% of the total gum balls are red which is 220, then the other 50% is 220.
5 0
3 years ago
Read 2 more answers
Other questions:
  • If MNO = PQR, which of the following can you conclude as being true?
    11·2 answers
  • It is believed that 3/4 of our dreams involve people that we know
    9·1 answer
  • Unpaid balance method: previous balance: $1280 payment: $200 new purchases: $52 and $48 periodic rate: 1.6% what is the new bala
    13·1 answer
  • . Find the greatest number of students to whom 24 pens and
    15·1 answer
  • Write 2 equivalent names for 2/3
    8·2 answers
  • Please answer this correctly
    15·2 answers
  • How do you figure probability
    14·1 answer
  • Write the explicit formula for the arithmetic sequence.<br><br> 2, -2, -6, -10, -14, ...
    14·1 answer
  • How do you estimate 289 and 7
    11·2 answers
  • 1) Jim took out a loan for $500. The rate is 8%. How much does Jim owe in interest if he pays it back in 4 1/2 years?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!