Complete question:
The growth of a city is described by the population function p(t) = P0e^kt where P0 is the initial population of the city, t is the time in years, and k is a constant. If the population of the city atis 19,000 and the population of the city atis 23,000, which is the nearest approximation to the population of the city at
Answer:
27,800
Step-by-step explanation:
We need to obtain the initial population(P0) and constant value (k)
Population function : p(t) = P0e^kt
At t = 0, population = 19,000
19,000 = P0e^(k*0)
19,000 = P0 * e^0
19000 = P0 * 1
19000 = P0
Hence, initial population = 19,000
At t = 3; population = 23,000
23,000 = 19000e^(k*3)
23000 = 19000 * e^3k
e^3k = 23000/ 19000
e^3k = 1.2105263
Take the ln
3k = ln(1.2105263)
k = 0.1910552 / 3
k = 0.0636850
At t = 6
p(t) = P0e^kt
p(6) = 19000 * e^(0.0636850 * 6)
P(6) = 19000 * e^0.3821104
P(6) = 19000 * 1.4653739
P(6) = 27842.104
27,800 ( nearest whole number)
Answer:
The density of the material must be at least 1.5 g/cm³.
Step-by-step explanation:
c
Step-by-step explanation:
let the big cube side be b
small cube side be s
s = 2/3 * b
bv + sv = 118.125
b^3 + 8/9 b^3= 118.125
17 b^3/8 = 118.125
b^3 = 55.58
b = 3.816in
s = 2.544in
The distance between starting and ending point is 34 miles.
Step-by-step explanation:
Given,
Car moves 16 miles to north then 30 mile to east.
It forms a right angle triangle.
The straight line distance from starting to ending point represents hypotenuse.
To find the distance between starting and ending point.
Formula
By <em>Pythagoras theorem,</em>
h² = b²+l² where h is the hypotenuse, b is base and l is the another side.
Taking, b=16 and l=30 we get,
h² = 16²+30²
or, h =
or, h = = 34
Hence,
The distance between starting and ending point is 34 miles.