1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
3 years ago
11

Animal cells have which of the following characteristics? Select all that apply.

Biology
1 answer:
devlian [24]3 years ago
4 0

Answer:

Animal Cell Structure

Animal cells are typical of the eukaryotic cell, enclosed by a plasma membrane and containing a membrane-bound nucleus and organelles. Unlike the eukaryotic cells of plants and fungi, animal cells do not have a cell wall. This feature was lost in the distant past by the single-celled organisms that gave rise to the kingdom Animalia. Most cells, both animal and plant, range in size between 1 and 100 micrometers and are thus visible only with the aid of a microscope.

Anatomy of the Animal Cell

The lack of a rigid cell wall allowed animals to develop a greater diversity of cell types, tissues, and organs. Specialized cells that formed nerves and muscles—tissues impossible for plants to evolve—gave these organisms mobility. The ability to move about by the use of specialized muscle tissues is a hallmark of the animal world, though a few animals, primarily sponges, do not possess differentiated tissues. Notably, protozoans locomote, but it is only via nonmuscular means, in effect, using cilia, flagella, and pseudopodia.

The animal kingdom is unique among eukaryotic organisms because most animal tissues are bound together in an extracellular matrix by a triple helix of protein known as collagen. Plant and fungal cells are bound together in tissues or aggregations by other molecules, such as pectin. The fact that no other organisms utilize collagen in this manner is one of the indications that all animals arose from a common unicellular ancestor. Bones, shells, spicules, and other hardened structures are formed when the collagen-containing extracellular matrix between animal cells becomes calcified.

Animals are a large and incredibly diverse group of organisms. Making up about three-quarters of the species on Earth, they run the gamut from corals and jellyfish to ants, whales, elephants, and, of course, humans. Being mobile has given animals, which are capable of sensing and responding to their environment, the flexibility to adopt many different modes of feeding, defense, and reproduction. Unlike plants, however, animals are unable to manufacture their own food, and therefore, are always directly or indirectly dependent on plant life.

Most animal cells are diploid, meaning that their chromosomes exist in homologous pairs. Different chromosomal ploidies are also, however, known to occasionally occur. The proliferation of animal cells occurs in a variety of ways. In instances of sexual reproduction, the cellular process of meiosis is first necessary so that haploid daughter cells, or gametes, can be produced. Two haploid cells then fuse to form a diploid zygote, which develops into a new organism as its cells divide and multiply.

The earliest fossil evidence of animals dates from the Vendian Period (650 to 544 million years ago), with coelenterate-type creatures that left traces of their soft bodies in shallow-water sediments. The first mass extinction ended that period, but during the Cambrian Period which followed, an explosion of new forms began the evolutionary radiation that produced most of the major groups, or phyla, known today. Vertebrates (animals with backbones) are not known to have occurred until the early Ordovician Period (505 to 438 million years ago).

Fluorescence Microscopy of Cells in Culture

Cells were discovered in 1665 by British scientist Robert Hooke who first observed them in his crude (by today's standards) seventeenth century optical microscope. In fact, Hooke coined the term "cell", in a biological context, when he described the microscopic structure of cork like a tiny, bare room or monk's cell. Illustrated in Figure 2 are a pair of fibroblast deer skin cells that have been labeled with fluorescent probes and photographed in the microscope to reveal their internal structure. The nuclei are stained with a red probe, while the Golgi apparatus and microfilament actin network are stained green and blue, respectively. The microscope has been a fundamental tool in the field of cell biology and is often used to observe living cells in culture. Use the links below to obtain more detailed information about the various components that are found in animal cells.

You might be interested in
Incomplete Dominance and Codominance You are studying leaf development in a member of the mustard family. You identify several m
Mariana [72]
<h2>Incomplete dominance & Co dominance</h2>

Explanation:

  • Twist- The mutant allele is prevailing to its relating wild-type allele.  
  • forked-the mutant allele is predominant to its relating wild-type allele.
  • Pale-The mutant allele is neither prevailing nor totally passive to its comparing wild-type allele.  
  • Mendel's outcomes were earth shattering halfway in light of the fact that they repudiated the (at that point well known) thought that guardians' attributes were for all time mixed in their posterity. At times,  the phenotype of a heterozygous living being can really be a mix between the phenotypes of its homozygous guardians.  
  • Closely identified with inadequate predominance is codominance, in which the two alleles are all the while communicated in the heterozygote.
  • Hence, the twist mutations are codominant allels at same locus.

4 0
3 years ago
Jelaskan pembagian protein dan sifat sifatnya
Nutka1998 [239]
Describe the Division of the protein and the nature of nature.
6 0
3 years ago
Does species are largest unit of life?​
Mademuasel [1]

Answer:

no. domain is the largest scale of measuring of life

6 0
3 years ago
Read 2 more answers
Please help me answer at least one?<br>​
LenKa [72]

Answer:

1. Explain why predators need to eat more than primary consumers.  

Explanation:

Predators need to eat more than primary consumers because in the trophic pyramid, primary consumers are at the bottom which means they receive the most energy because they eat the plants. As the pyramid goes on upwards, energy is lost each time, so that means by the time it reaches the top of the pyramid their is only about 0.1% of the energy we started with when the primary consumers ate the producers. Meaning, the predators need to eat more than the primary consumers because although the predators eat more than the primary consumers, they still at the end of the day get the same amount of energy just one eats more than another.  

8 0
2 years ago
16. An organ system is a group of organs that (2 points)
True [87]

Answer:

Organ systems are organs that work together to perform a specific bodily function, so your answer is D

Explanation:

6 0
3 years ago
Other questions:
  • Elina is trying to determine if a particular disease can be inherited from a set of parents. Dwight is studying the effects of d
    7·1 answer
  • Which characteristic is necessary for natural
    5·1 answer
  • What is the name for the compound with the formula Ba0
    15·1 answer
  • Porque os mamíferos tiveram tanto sucesso evolutivo?
    8·1 answer
  • Where is chicken pox most common??
    5·2 answers
  • Which structure is found in the cytoplasm of a prokaryotic cell, but is not found in the cytoplasm of a eukaryotic cell?
    8·2 answers
  • 6. Does blood always carry a lot of oxygen to various parts of your body?
    9·2 answers
  • A solid is that form of matter that possesses the following
    14·1 answer
  • 21. In space there is no air resistance or friction. If no other force touches it, a spaceship gliding through space _____
    5·2 answers
  • What cell part is responsible for capturing solar energy for a plant?.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!