D and H are corresponding
G and C are corresponding
E and A are corresponding
B and F are corresponding
A regular hexagon can be dissected into six equilateral triangles by adding a center point
The inequality that can be used to determine x is 
<u />
<h3>How to generate the inequality</h3>
<u>Given data</u>
Rental company charge per day = $31.91
Rental company charge per mile driven = $0.07
Hudson plans to drive 100 miles
Hudson has at most $70
solution
let x represent he maximum number of days Hudson can afford to rent while staying on budget. cost of number of days is:
$31.91 * x= 31.91x
As Hudson plans to ride 100 miles; cost is:
100 * 0.07 = $7
therefore number of days plus 100 miles ride is:
31.91x + 7
with a limit of less than or equal to the budget we have:

The inequality above could be used to determine x
Read more on inequality here: brainly.com/question/11613554
#SPJ1
Answer:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)
Step-by-step explanation:
From the formula of volume of a sphere we have to isolate "r" on one side of the equation i.e. we have to make "r" the subject of the equation.
![V=\frac{4}{3} \pi r^{3}\\\\ \text{Multiplying both sides by 3/4 we get}\\\\\frac{3V}{4} = \pi r^{3}\\\\ \text{Dividing both sides by } \pi \\\\ \frac{3V}{4 \pi} = r^{3}\\\\\text{Takeing cube root of both sides}\\\\\sqrt[3]{\frac{3V}{4 \pi}} = r](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BMultiplying%20both%20sides%20by%203%2F4%20we%20get%7D%5C%5C%5C%5C%5Cfrac%7B3V%7D%7B4%7D%20%3D%20%5Cpi%20r%5E%7B3%7D%5C%5C%5C%5C%20%5Ctext%7BDividing%20both%20sides%20by%20%7D%20%5Cpi%20%5C%5C%5C%5C%20%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%20%3D%20r%5E%7B3%7D%5C%5C%5C%5C%5Ctext%7BTakeing%20cube%20root%20of%20both%20sides%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D%20%3D%20r)
Therefore:
![r = \sqrt[3]{\frac{3V}{4 \pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%20%5Cpi%7D%7D)