1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
suter [353]
2 years ago
14

Look at the following sum. 1 + 1⁄2 + 1⁄4 + 1⁄8 + 1⁄16 + 1⁄32 + 1⁄64. . . Notice that the denominator of each fraction in the sum

is twice the denominator that comes before it. If you continue adding on fractions according to this pattern, when will you reach a sum of 2?
Mathematics
1 answer:
Alex17521 [72]2 years ago
7 0
Use the butterfly methods
You might be interested in
Find the 61st term of the arithmetic sequence -12,-28,-44...
fiasKO [112]

Answer:

-1.4152338

Step-by-step explanation:

Formula

axr raise power n-1

Common ratio is T2/T1

-28/-12 is 2.3

-28(2.3) raise power 60

5 0
3 years ago
Differences in linear and quadratic equations
BabaBlast [244]

Answer:

linear equation has two variables doesn't involve any power

quadratic equation involves one of the variables raised to the second power.

Step-by-step explanation:

A <u>linear equation</u> in two variables doesn't involve any power higher than one for either variable. It has the general form Ax + By + C = 0, where A, B and C are constants. ... A <u>quadratic equation</u>, on the other hand, involves one of the variables raised to the second power.

7 0
2 years ago
If a1=10 and an=an-1+4 then find the value of a5
tamaranim1 [39]

Answer:

26

Step-by-step explanation:

Each term is the previous with 4 added to it.

a1 = 10, a2 = 14, a3 = 18, a4 = 22, a5 = 26

3 0
2 years ago
Fill in the blanks. <br><br> sedrftgyuhihkgfndt7y
kvv77 [185]

HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

5 0
2 years ago
Read 2 more answers
What is the definition of an irrational number?
lianna [129]
A real number that cannot be expressed as a ratio of integers.
3 0
3 years ago
Read 2 more answers
Other questions:
  • The table gives sales data for a stationery store in any given two weeks. It lists the probability of the number of items purcha
    11·1 answer
  • Solve the equation<br> 1/2(2x-10)=4
    13·2 answers
  • Which of the following shows the equation below rewritten in the form ax^2+by+c=0 ? 2x^2+x+3=4(3x-5)
    7·1 answer
  • What is 3186 divided by 62
    10·2 answers
  • Find sin q if q is an angle in standard position and the point with coordinates (4, 3) lies on the terminal side of the angle.
    11·2 answers
  • 10. Use substitution to solve the system of equations below.<br> - x + 2y = 5<br> 3x - 5y =-11
    9·1 answer
  • Plsss help :) will give brainly
    9·1 answer
  • What 4 number add up to 47​
    7·1 answer
  • Pls helppp ill give brainliest &lt;3​
    13·2 answers
  • You and your sister are buying your mom a birthday gift. You paid $54 and your sister paid $22. What percentage did each sister
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!