1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
2 years ago
14

Una solución tiene un valor de pH=5 Cuál es la concentración molar de OH-?​

Mathematics
1 answer:
Mnenie [13.5K]2 years ago
5 0

Answer:

Podemos hacer la conversión entre [\text{H}^+][H

+

]open bracket, start text, H, end text, start superscript, plus, end superscript, close bracket y \text{pH}pHstart text, p, H, end text mediante las siguientes ecuaciones:

\begin{aligned}\text{pH}&=-\log[\text{H}^+]\\ \\ [\text H^+]&=10^{-\text{pH}}\end{aligned}

pH

[H

+

]

=−log[H

+

]

=10

−pH

You might be interested in
Can you guys help me to find the measure of each angle tysm.
barxatty [35]

Answer:

∠EBF = 51°

∠DBE = 17°

∠ABF = 141°

∠EBA = 90°

∠DBC = 107°

∠DBF = 68°

Step-by-step explanation:

Hope this helps

7 0
2 years ago
Read 2 more answers
Which logaritnmic equation equivalent to the exponential equation below 5c=125
nataly862011 [7]
I assume you meant to write 5^c = 125. The equivalent logarithmic expression for this would be ㏒₅125=c.
3 0
3 years ago
Using polar coordinates, evaluate the integral which gives the area which lies in the first quadrant below the line y=5 and betw
vfiekz [6]

First, complete the square in the equation for the second circle to determine its center and radius:

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0

<em>x</em> ² - 10<em>x</em> + 25 + <em>y </em>² = 25

(<em>x</em> - 5)² + <em>y</em> ² = 5²

So the second circle is centered at (5, 0) with radius 5, while the first circle is centered at the origin with radius √100 = 10.

Now convert each equation into polar coordinates, using

<em>x</em> = <em>r</em> cos(<em>θ</em>)

<em>y</em> = <em>r</em> sin(<em>θ</em>)

Then

<em>x</em> ² + <em>y</em> ² = 100   →   <em>r </em>² = 100   →   <em>r</em> = 10

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0   →   <em>r </em>² - 10 <em>r</em> cos(<em>θ</em>) = 0   →   <em>r</em> = 10 cos(<em>θ</em>)

<em>y</em> = 5   →   <em>r</em> sin(<em>θ</em>) = 5   →   <em>r</em> = 5 csc(<em>θ</em>)

See the attached graphic for a plot of the circles and line as well as the bounded region between them. The second circle is tangent to the larger one at the point (10, 0), and is also tangent to <em>y</em> = 5 at the point (0, 5).

Split up the region at 3 angles <em>θ</em>₁, <em>θ</em>₂, and <em>θ</em>₃, which denote the angles <em>θ</em> at which the curves intersect. They are

<em>θ</em>₁ = 0 … … … by solving 10 = 10 cos(<em>θ</em>)

<em>θ</em>₂ = <em>π</em>/6 … … by solving 10 = 5 csc(<em>θ</em>)

<em>θ</em>₃ = 5<em>π</em>/6  … the second solution to 10 = 5 csc(<em>θ</em>)

Then the area of the region is given by a sum of integrals:

\displaystyle \frac12\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}\left(10^2-(10\cos(\theta))^2\right)\,\mathrm d\theta+\int_{\frac\pi6}^{\frac{5\pi}6}\left((5\csc(\theta))^2-(10\cos(\theta))^2\right)\,\mathrm d\theta\right)

=\displaystyle 50\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\} \sin^2(\theta)\,\mathrm d\theta+\frac12\int_{\frac\pi6}^{\frac{5\pi}6}\left(25\csc^2(\theta) - 100\cos^2(\theta)\right)\,\mathrm d\theta

To compute the integrals, use the following identities:

sin²(<em>θ</em>) = (1 - cos(2<em>θ</em>)) / 2

cos²(<em>θ</em>) = (1 + cos(2<em>θ</em>)) / 2

and recall that

d(cot(<em>θ</em>))/d<em>θ</em> = -csc²(<em>θ</em>)

You should end up with an area of

=\displaystyle25\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}(1-\cos(2\theta))\,\mathrm d\theta-\int_{\frac\pi6}^{\frac{5\pi}6}(1+\cos(2\theta))\,\mathrm d\theta\right)+\frac{25}2\int_{\frac\pi6}^{\frac{5\pi}6}\csc^2(\theta)\,\mathrm d\theta

=\boxed{25\sqrt3+\dfrac{125\pi}3}

We can verify this geometrically:

• the area of the larger circle is 100<em>π</em>

• the area of the smaller circle is 25<em>π</em>

• the area of the circular segment, i.e. the part of the larger circle that is bounded below by the line <em>y</em> = 5, has area 100<em>π</em>/3 - 25√3

Hence the area of the region of interest is

100<em>π</em> - 25<em>π</em> - (100<em>π</em>/3 - 25√3) = 125<em>π</em>/3 + 25√3

as expected.

3 0
2 years ago
If Will gave Molly $9, he would now have the same amount of money as her. If Molly would have given Will $9, the ratio of the mo
Rufina [12.5K]

Answer:

What is the wI-FI PASSWORD

Step-by-step explanation:

Friend me on

(2x+1)-1=0

Divide

2=0

Reitalizie

<em>2=0</em>

Reatomize

⊕∴∵

Reunatomize

2=0

It is not true

2=0

5 0
2 years ago
Hello, please help thank youu!!
uranmaximum [27]

Answer:

36 \frac{1}{2}

Step-by-step explanation:

<u>(5</u>\frac{1}{2}<u> x 3)</u> + (10 ÷ \frac{1}{2})

(16\frac{1}{2}) + <u>(10 ÷ </u>\frac{1}{2}<u>)</u>

<u>(16</u>\frac{1}{2}<u>) + (20)</u>

36 \frac{1}{2}

7 0
3 years ago
Read 2 more answers
Other questions:
  • A bag has 5 red marbles, 6 blue marbles, 3 green marbles, 4 black marbles, and 2 yellow marbles, marbles. What is a reasonable p
    10·1 answer
  • Plz help toofree your the best plz help me
    11·1 answer
  • Choose the correct simplification of the expression 9 over h to the power of negative 3. h to the 3rd power over 9 9 over h to t
    6·2 answers
  • Which equation is NOT a linear function?
    8·2 answers
  • How do you find the leg of a triangle?
    14·1 answer
  • Lines m and n are graphed on the coordinate plane below select all of the statements that are true
    11·2 answers
  • Convert the number to standard form.<br><br> 8.71 xx10^(12)
    11·1 answer
  • A goose started on the ground and
    12·1 answer
  • IS (-1,2) A SOLUTION OF THIS INEQUALITY ???
    15·1 answer
  • Here are vaccinations for all of the following except __________
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!