The answer: y= 6(x-7/2)^2-137/2
The cross section of the satellite dish is an illustration of a quadratic function
The quadratic function that models the cross-section is y = 1/6(x^2 - 9)
<h3>How to determie the equation of the cross-section?</h3>
The given parameters are:
Width = 6 feet
Depth = 1.5 feet
Express the width the sum of two equal numbers
Width = 3 + 3
The above means that, the equation of the cross section passes through the x-axis at:
x = -3 and 3
So, we have:
y = a(x - 3) * (x + 3)
Express as the difference of two squares
y = a(x^2 - 9)
The depth is 1.5.
This is represented as: (x,y) =(0,-1.5)
So, we have:
-1.5 = a(0^2 - 9)
Evaluate the exponent
-1.5 = -9a
Divide both sides by -9
a = 1/6
Substitute 1/6 for a in y = a(x^2 - 9)
y = 1/6(x^2 - 9)
Hence, the quadratic function that models the cross-section is y = 1/6(x^2 - 9)
Read more about quadratic functions at:
brainly.com/question/1497716
Answer: If you are trying to put the fractions in simplest form, then here are your answers:
9/4
25/8
5/16
Diameter=16mm, so the radius is 8. The formula for volume of a cylinder is the area of the base times height, or v=πr²h.
Substituting the values in, we get π(8²)(5.7), which gives us roughly 1146mm^3.
The sketch of the parabola is attached below
We have the focus

The point

The directrix, c at

The steps to find the equation of the parabola are as follows
Step 1
Find the distance between the focus and the point P using Pythagoras. We have two coordinates;

and

.
We need the vertical and horizontal distances to find the hypotenuse (the diagram is shown in the second diagram).
The distance between the focus and point P is given by

Step 2
Find the distance between the point P to the directrix

. It is a vertical distance between y and c, expressed as

Step 3
The equation of parabola is then given as

=


⇒ substituting a, b and c


⇒Rearranging and making

the subject gives