<h3>
B. True</h3>
"This was the idea that non-living objects can give rise to living organisms."
Actual velocity of the ping-pong ball= 5 m/s
Explanation:
velocity of ping pong ball because of the shot gun= 4 m/s North
velocity added to the ping-pong ball due to the wind=3 m/s
These velocities are perpendicular to each other. so we use Pythagoras theorem to find the resultant velocity of the ping- pong ball
so the actual velocity of the ping-pong ball =V= √4²+3²
V= √25
V= 5 m/s
Answer:
A slider Crank Mechanism creates linear and rotary motion
Explanation:
Answer:
a)0.674 kg b) 2.2 s c) 0.9 m/s²
Explanation:
The amplitude of the ball (xo) = 11.0cm, half way between its equilibrium point its maximum displacement x = 11 cm / 2 = 5.5 cm = 5.5 / 100 in meters = 0.055 meters, speed at this point = 27.2 cm /s = (27.2 / 100) in m/s = 0.272 m/s,
spring constant K = 5.5 N/m
a) The mass of the ball (m) can be calculated using the formula below
v =√ (x²o - x²)K/m
make m subject of the formula
v² = (xo² - x²) K/m
m = K ( xo² - x²) / v²
m = 0.674kg
b) The period of the oscillation can be calculated by the following formula
T = 2π√ (m /K)
substitute the values into the formula
T = 2 × 3.142 × √ (0.674/ 5.5) = 2.2s
c) The maximum acceleration of the ball which occurs at the maximum displacement of the ball can be calculated by the following formula
a = K / m × x ( maximum displacement of the body) = 5.5 / 0.674 × 0.11 = 0.9 m/s²
Answer:
A) electric field strength between the plates;E = 2 x 10^(6) N/C
B) exit velocity;v = 8.39 x 10^(7) m/s
Explanation:
We are given;
Potential difference; V = 20 kV = 20000 V
Distance between the 2 parallel plates; d = 1cm = 0.01 m
A) The electric field strength will be gotten from;
E = V/d
E = 20000/0.01
E = 2000000
E = 2 x 10^(6) N/C
B) For exit speed, we'll use the formula for Kinetic energy; KE = (1/2)mv²
KE is also expressed as; V•q_e
Thus,
(1/2)mv² = V•q_e
Where;
V is potential difference = 20000 V
Q_e is charge of electron which has a constant value of; (1.6 x 10^(-19))C
m is mass of electron with a constant value of (9.1 x 10^(-31)) kg
v is the velocity
Thus, making v the subject, we have;
v = √((2V•q_e)/m)
v = √((2 x 20000•(1.6 x 10^(-19)))/(9.1 x 10^(-31)))
v = 83862786 m/s or
v = 8.39 x 10^(7) m/s