Answer:
57 N
Explanation:
Were are told that the force
of gravity on Tomas is 57 N.
And it acts at an inclined angle of 65°
Thus;
The vertical component of the velocity is; F_y = 57 sin 65
While the horizontal component is;
F_x = 57 cos 65
Thus;
F_y = 51.66 N
F_x = 24.09 N
The net force will be;
F_net = √((F_y)² + (F_x)²)
F_net = √(51.66² + 24.09²)
F_net = √3249.0837
F_net = 57 N
Answer: hello question b is incomplete attached below is the missing question
a) attached below
b) V = 0.336 ft/s
Explanation:
Elongation ( Xo) = 16/ 7 feet
mass attached to 4-foot spring = 16 pounds
medium has 9/2 times instanteous velocity
<u>a) Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 2 ft/s</u>
The motion is an underdamped motion because the value of β < Wo
Wo = 3.741 s^-1
attached below is a detailed solution of the question
1 pound ≈ 0.4536 kg
170 pounds ≈ 170 * 0.4536 kg
≈ 77.112 kg
I don't quite know what you're asking so I'll just go on a rant :) Wegener created and supported the continental drift theory, which stated that all of the continents once formed a super continent called Pangea. No one at the time believed in the theory though so he spent the rest of his life trying to find evidence to prove it. However, after he died scientists began to find information that supported his theory. When scientists began to study Earth's surface and the layers below, the theory of the tectonic plates was formed. This theory stated that Earth's crust, the lithosphere, was divided into twelve moving plates. This theory did in fact prove that Wegener's theory was correct. Another theory that proved Wegener's theory to be true was the process of Sea Floor Spreading. This theory stated that at divergent plate boundaries, new ocean floor was being created and the old was being pushed away from the boundary, the old sea floor would then be pushed to deep sea trenches created by convergent plate boundaries and essentially recycled back into the Earth. I hope this helped, sorry it is so long :)