E, 63% of the value. I forget the rationale behind it but I learnt that in engineering. 90% confident for that answer.
Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>
Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower

GiveN:
- Initial velocity = 9.8 m/s²
- Accleration due to gravity = -9.8 m/s²
- Time taken = 1 s
To FinD:
- Final velocity of the ball?
Step-by-step Explanation:
Using the first Equation of motion,
⇒ v = u + gt
⇒ v = 9.8 + -9.8(1)
⇒ v = 0 m/s
The final velocity is hence <u>0</u><u> </u><u>m</u><u>/</u><u>s</u><u>.</u>
<h3>
Note:</h3>
- While solving questions of under gravity motions using equations of motion, remember the sign convection to avoid mistakes.
- You can consider positive above the ground and negative for towards it.