4(2.4)(2)+43
(9.6)(2)+43
19.2+43
62.2
the value of 4n x 2 + 43, when n=2.4, is 62.2
Answer: a) α = 0.7927, b) at u=14.8, β = 0.99767, at u = 14.9, β= 0.2073
Step-by-step explanation: a) from the question, u= population mean = 15 and x= sample mean = 14.9
σ = population standard deviation = 0.5, n = sample size = 50.
We get the probability of committing a type 1 error by using the z score.
Z = x - u/(σ/√n)
Z = 14.9 - 15/(0.5/√50)
Z = - 0.1/0.0707
Z = - 1.41.
By checking the the probabilistic value attached to this z score using a standard normal distribution table whose area is to the left of the distribution, we have that
P(z=-1.41) = 0.7927.
Hence the probability of committing a type 1 error is 0.7927
b)
at x = 14.8 ( I let ua=x=14.8)
Z = x - u/(σ/√n)
Z = 14.8 - 15/(0.5/√50)
Z = - 0.2/ 0.0707
Z = - 2.83
Using the standard normal distribution table, we have that
P(z=-2.38) = 0.00233.
But α + β = 1
Where α= probability of committing a type 1 error
β = probability of committing a type 2 error.
β = 1 - α
β = 1 - 0.00233
β = 0.99767
At x = 14.9
Z = x - u/(σ/√n)
Z = 14.9 - 15/(0.5/√50)
Z = - 0.1/0.0707
Z = - 1.41.
P(z=-1.41) = 0.7927.
α = 0.7927.
But α + β = 1
β = 1 - 0.7927
β = 0.2073
Answer:
143312
Step-by-step explanation:
This is my answer: 4x^2-28xy- 7y^2
Answer:
<em>-</em><em>2</em><em>2</em><em> </em><em>/</em><em>3</em><em> </em><em>+</em><em> </em><em>(</em><em>-</em><em>9</em><em>4</em><em>/</em><em>5</em><em>)</em><em> </em>
<em>-</em><em>2</em><em>2</em><em>/</em><em>3</em><em> </em><em>+</em><em> </em><em>-</em><em>8</em><em>9</em><em>/</em><em>5</em>
Step-by-step explanation:
<em>-</em><em>1</em><em>1</em><em>0</em><em>/</em><em>1</em><em>5</em><em> </em><em>+</em><em> </em><em>-</em><em> </em><em>2</em><em>5</em><em>7</em><em>/</em><em>1</em><em>5</em>
<em>-</em><em>3</em><em>6</em><em>7</em><em>/</em><em>1</em><em>5</em>