(x - 1)(x - 2)(x + 2)
note that the sum of the coefficients 1 - 1 - 4 + 4 = 0
thus x = 1 is a root and (x - 1 ) is a factor
dividing x³ - x² - 4x + 4 by (x - 1)
x³ - x² - 4x + 4 = (x - 1)(x² - 4 ) (note (x² - 4 ) is a difference of squares )
x³ - x² - 4x + 4 = (x - 1)(x - 2)(x + 2)
(x - 1)(x - 2)(x + 2 ) =0
x - 1 = 0 ⇒ x = 1
x - 2 = 0 ⇒ x = 2
x + 2 = 0 ⇒ x = - 2
solutions are x = 1 or x = ± 2
Answer:
I'm not really sure what you're asking because there's no image.
Step-by-step explanation:
please try to reword it and maybe show a picture .
7x + 6 < 3(x - 2)
7x + 6 < 3x - 6
7x - 3x < -6 - 6
4x < -12
x < -12/4
x < -3
<span>{x | x < -3}</span>
Answer:
The missing area for both sides is 48ft²
the missing dimension is 12ft
Step-by-step explanation:
Add all the areas up
12+36+12+36=96
192-96=96
96÷2=48
48÷4=12
9514 1404 393
Answer:
top down: ∞, 0, 1, 0, ∞
Step-by-step explanation:
The equation will have infinite solutions when the left side and right side simplify to the same expression. This is the case for the first and last expressions listed.
2(x -5) = 2(x -5) . . . . expressions are already identical
x +2(x -5) = 3(x -2) -4 ⇒ 3x -10 = 3x -10 . . . the same simplified expression
__
The equation will have no solutions when the x-coefficients are the same, but there are different added constants.
5(x +4) = 5(x -6) ⇒ x +4 = x -6 . . . not true for any x
4(x -2) = 4(x +2) ⇒ x -2 = x +2 . . . not true for any x
__
The equation will have one solution when coefficients of x are different.
5(x +4) = 3(x -6) ⇒ 2x = -38 ⇒ x = -19