To get the z-value of the scores of the four students, we are going to use the formula for standard score or z-score. It is score minus the mean score, then divided by standard deviation.
z= Score (X)-Mean / SD
To find the z-value of each score, we have to use a Z table. Using the z-score, we are to look first at the y-axis of the table which will highlight the first two digits of the z-score. Then, the x-axis for the second decimal place of the z-score.
You can use this as reference for the z-table: http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
Mean= 500SD= 100Scores= 560, 450, 640, 530
For the student who scored 560,z= X-Mean / SDz= 560-500 / 100z= 60 / 100z= 0.6
The score is 0.6 standard deviation above the mean. The z-value is 0.7257 or 72.57%.
For the student who scored 450,z= X-Mean / SDz= 450-500 / 100z= -50 / 100z= -0.5
The score is -0.5 standard deviation above the mean. The z-value is 0.3085 or 30.85%.
For the student who scored 640,z= X-Mean / SDz= 640-500 / 100z= 140 / 100z= 1.4
The score is 1.4 standard deviation above the mean. The z-value is 0.9192 or 91.92%.
For the student who scored 530,z= X-Mean / SDz= 530-500 / 100z= 30 / 100z= 0.3
The score is 0.3 standard deviation above the mean. The z-value is 0.6179 or 61.79%.
Answer: 173.3 feet
Step-by-step explanation:
~-2.15139............ hope it helps
The difference could be that it is more difficult than multiplying improper/regular fractions. Multiplying improper/regular fractions makes it much easier by just multiplying the numerator and denominator of the fractions while mixed fractions require more steps. After multiplying the fractions you just need to simplify.
BC= 85 think u cam try or try this 51