Answer:
Larger habitats support populations with higher carrying capacities. Higher quality habitats support populations with higher carrying capacities. There is no difference in population growth rate between large and small habitats. Some major threats to biodiversity are: Habitat destruction/Deforestation, Introduced and invasive species, Genetic pollution, Over exploitation, Hybridization, Climate change, Diseases, Human overpopulation. If abiotic or biotic factors change, the carrying capacity changes as well. Natural disasters can destroy resources in an ecosystem. If resources are destroyed, the ecosystem will not be able to support a large population. This causes the carrying capacity to decrease.
Carrying capacity could be reduced if each individual within the species consumed less from the environment. Think about humans: if every human needs a four car garage and a large house, the planet can sustain fewer humans than if each human lived in a studio apartment and traveled using a bicycle. It would take 1.75 Earths to sustain our current population. If current trends continue, we will reach 3 Earths by the year 2050. It is beyond dispute that the modern industrial world has been able to temporarily expand Earth's carrying capacity for our species. As Nordhaus points out, population has grown dramatically (from less than a billion in 1800 to 7.6 billion today), and so has per capita consumption. Historically, habitat and land use change have had the biggest impact on biodiversity in all ecosystems, but climate change and pollution are projected to increasingly affect all aspects of biodiversity. Sustainable agriculture practices support integrating biodiversity in various ways including in terms of diversity of crops, traditional agriculture techniques to control pests and increase productivity as well as ensuring that farmed land is made up of a diverse mix of grazing land, crop land, orchards, wetlands and more.
Explanation:
Hope this helps :)
Answer: This is called chlorine
Explanation: 18
You can infer that the parts of the body with the most touch receptors are the most important in receiving touch stimuli from the environment.
Plantae: Autotrophic, Multi- or Monocellular, have cell walls as well as a membrane, have a chloroplast making the characteristic green color and to capture sunlight for photosynthesis. Break down generated glucose into it's components.
Animalia: Heterotrophic, Multi- or Monocellular, have a cell membrane made of a phospholipid bilayer, and many mitochondria to aid with movement energy. Feed on plants or other animals. Eukaryotic cells.
Fungi: Heterotrophic, most Multicellular, have a rigid cell wall made of chitin, specialized cells to aid with decomposition of dead organic matter. Eukaryotic cells.
Protista: Can be plant-like, animal-like, or fungus-like. Most are single-celled, may be chemosynthetic or photosynthetic. Eukaryotic cells.
Archeabacteria: Prokaryotic. Do not have nuclei or membrane-bound organelles. Move around using a flagellum to propel itself. Lives in mainly fluid environments (air, water). Separated from Eubacteria due to it's high tolerance of extreme conditions, such as high salinity, no oxygen, burning heat, or freezing cold. Can be chemosynthetic or anaerobic, as well as aerobic.
Eubacteria: Normal, everyday bacteria. Prokaryotic, chemosynthetic, anaerobic, or aerobic. Do not have nuclei or membrane-bound organelles. Mobile using a flagellum to propel itself.
The answer is Lysosome The enzymes that are responsible for breaking down the debris are synthesized in ER and they form small compartments by fusing with acidic vesicles and became organelles called lysosome<span> (in animals) or </span>vacuole (in plants and fungi).