Answer:
λ = 5.56 × 10⁻³ m
Explanation:
You have to use the formula c = λv to solve the problem. Review what you are given. You are given v and c, where v = 5.40 × 10¹⁰ Hz and c = 3.00 × 10⁸ m/s. The value c is for the speed of light and is something you need to memorize. You will use it often in physics and sometimes in chemistry.
Now that you figured out what you know, you can see that there is only one unknown, allowing you to solve.
c = λv
λ = c/v
λ = (3.00 × 10⁸ m/s)/(5.40 × 10¹⁰ Hz)
λ = 5.56 × 10⁻³ m
Answer:
Yes, Mass is conserved.
Explanation:
Every chemical reactions obey the law of conservation of mass. The law of conservation of mass states that in chemical reactions, mass is always constant.
Equation:
2Na + Cl₂ → 2NaCl
From the equation above, one can observe that the reaction started using 2 atoms of Na and it produced 2 atoms of the same element in NaCl. A molecule of Cl produced 2 atoms of Cl in the NaCl
Design a simple experiment to support your answer:
Aim: To demonstrate the law of conservation of mass
One Na atom weighs 23g
Two Na atom will weigh 2 x 23 = 46g
1 atom of Cl is 35.5g
1 molecule of Cl containing two atoms of Cl will weigh 2 x 35.5 = 71g
Total mass of reactants = mass of 2Na + 1Cl₂ = (46 + 71)g = 117g
On the product side, Mass of 1 NaCl = 23+ 35.5 = 58.5g
Two moles of NaCl will give 2 x 58.5g = 117g
Since the mass on both side is the same, one can say mass is conserved.
<h2>The required option d) "specific heat" is correct.</h2>
Explanation:
- To raise the temperature of any substance or material of certain mass to respective temperature it requires some amount of heat.
- Specific heat is the amount of heat necessary to raise the temperature of the substance of 1 gram to 1 Kelvin.
- It is the amount of heat which is required to raise the temperature per unit mass to per unit temperature.
- Thus, the required "option d) specific heat" is correct.
Specific heat capacity is the energy needed to raise the temrature of a substance of mass of 1kg by 1kelvin Q= Mc (delta) T delta T = change in temprature M = mass c= specific heat capacity q = energy if you take everything except C to be one Q will get bigger as C gets bigger
I think the answer is water and hydrochloric acid