From the given information:
- Taking the movement of the Duck in the North as the x-direction
- The movement of the Duck in the East direction as the y-direction
However, we will have to compute the initial velocity and the acceleration of the duck in their vector forms.
<h3>In vector form;</h3>
The initial velocity is:
![\mathbf{u ^{\to} = 0.7 m/s ( -cos 25^0 \hat x + sin 25^0 \hat y ) \ m/s}](https://tex.z-dn.net/?f=%5Cmathbf%7Bu%20%5E%7B%5Cto%7D%20%3D%200.7%20m%2Fs%20%28%20-cos%2025%5E0%20%5Chat%20x%20%2B%20sin%2025%5E0%20%5Chat%20y%20%29%20%5C%20m%2Fs%7D)
The acceleration is:
![\mathbf{a ^{\to} = 0.5 m/s ( cos 41^0 \hat x - sin 41^0 \hat y ) \ m/s^2}](https://tex.z-dn.net/?f=%5Cmathbf%7Ba%20%5E%7B%5Cto%7D%20%3D%200.5%20m%2Fs%20%28%20cos%2041%5E0%20%5Chat%20x%20-%20sin%2041%5E0%20%5Chat%20y%20%29%20%5C%20m%2Fs%5E2%7D)
The objective of this question is to determine the speed of the duck at a certain time. Since it is not given, let's assume we are to determine the Duck speed after 4 seconds of accelerating;
Then, it implies that time (t) = 4 seconds.
Using the first equation of motion:
![v^{\to} = u ^{\to} + a^{\to} t](https://tex.z-dn.net/?f=v%5E%7B%5Cto%7D%20%3D%20u%20%5E%7B%5Cto%7D%20%2B%20a%5E%7B%5Cto%7D%20t)
Then, we can replace their values into the equation of motion in order to determine the speed:
![\mathbf{v^{\to} =\Big(0.7 ( -cos 25^0 \hat x + sin 25^0 \hat y )+4 \times 0.5 ( cos 41^0 \hat x - sin 41^0 \hat y )\Big)}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D%5CBig%280.7%20%28%20-cos%2025%5E0%20%5Chat%20x%20%2B%20sin%2025%5E0%20%5Chat%20y%20%29%2B4%20%5Ctimes%200.5%20%28%20cos%2041%5E0%20%5Chat%20x%20-%20sin%2041%5E0%20%5Chat%20y%20%29%5CBig%29%7D)
![\mathbf{v^{\to} =\Big(0.7 ( -cos 25^0 \hat x + sin 25^0 \hat y )+2.0 ( cos 41^0 \hat x - sin 41^0 \hat y )\Big)}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D%5CBig%280.7%20%28%20-cos%2025%5E0%20%5Chat%20x%20%2B%20sin%2025%5E0%20%5Chat%20y%20%29%2B2.0%20%28%20cos%2041%5E0%20%5Chat%20x%20-%20sin%2041%5E0%20%5Chat%20y%20%29%5CBig%29%7D)
![\mathbf{v^{\to} =\Big( ( -0.7 cos 25^0 \hat x + 0.7 sin 25^0 \hat y )+( 2.0cos 41^0 \hat x - 2.0sin 41^0 \hat y )\Big)}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D%5CBig%28%20%28%20-0.7%20cos%2025%5E0%20%5Chat%20x%20%2B%200.7%20sin%2025%5E0%20%5Chat%20y%20%29%2B%28%202.0cos%2041%5E0%20%5Chat%20x%20-%202.0sin%2041%5E0%20%5Chat%20y%20%29%5CBig%29%7D)
Collect like terms:
![\mathbf{v^{\to} =\Big( (2.0cos 41^0 -0.7 cos 25^0 )\hat x+( 0.7 sin 25^0 - 2.0sin 41^0 )\Big)\hat y}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D%5CBig%28%20%282.0cos%2041%5E0%20-0.7%20cos%2025%5E0%20%20%20%29%5Chat%20x%2B%28%20%200.7%20sin%2025%5E0%20-%202.0sin%2041%5E0%20%29%5CBig%29%5Chat%20y%7D)
![\mathbf{v^{\to} =0.87500 \hat x- 1.01629 \hat y}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D0.87500%20%20%20%5Chat%20x-%201.01629%20%5Chat%20y%7D)
Thus, the magnitude is:
![\mathbf{v^{\to} =\sqrt{(0.87500 )^2 +( 1.01629 )^2}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D%5Csqrt%7B%280.87500%20%29%5E2%20%2B%28%201.01629%20%29%5E2%7D%7D)
![\mathbf{v^{\to} =\sqrt{0.76563 +1.03285}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D%5Csqrt%7B0.76563%20%2B1.03285%7D%7D)
![\mathbf{v^{\to} =\sqrt{1.79848}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D%5Csqrt%7B1.79848%7D%7D)
![\mathbf{v^{\to} =1.34 \ m/s}](https://tex.z-dn.net/?f=%5Cmathbf%7Bv%5E%7B%5Cto%7D%20%3D1.34%20%5C%20m%2Fs%7D)
Therefore, we can conclude that the speed of the duck after 4 seconds is 1.34 m/s
Learn more about vectors here:
brainly.com/question/17108011?referrer=searchResults