THEOREM:
- h² = p² + b² where h is hypotenuse, b is base and p is perpendicular.
ANSWER:
[3] By pythagorean theorem,
- x² = 14² + 9²
- x² = 196 + 81
- x² = 277
- x = √277
- x = 16.64 rounded.
[4] By pythagorean theorem,
- x² = 32² + 24²
- x² = 1024 + 576
- x² = 1600
- x = √1600
- x = 40.
[5] By pythagorean theorem,
- (2x)² = 21² – 12.6²
- 4x² = 441 – 158.76
- 4x² = 284.24
- x² = 284.24/4 = 70.56
- x = √70.56
- x = 8.4
[6] By tangent property,
- 7x – 29 = 2x + 16
- 7x – 2x = 16 + 29
- 5x = 45
- x = 9.
So, WX = 7(9) – 29 = 63 – 29
Can u take its pictures and post it bcuz it might be easer to answer
Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
Answer:
<h2>7a-12</h2>
Step-by-step explanation:

Group A has a greater maximum and it is more consistent than Group B.
The IQR is 700 for group A
The IQR is 750 for group B