200 yards bozo yeejrkrjrjthbthttjtjtnrm
9514 1404 393
Answer:
$7641.24
Step-by-step explanation:
The amortization formula tells the payment amount.
A = P(r/n)/(1 -(1 +r/n)^(-nt))
where principal P is paid off in t years with n payments per year at interest rat r.
Using the given values, we find ...
A = $7000(0.165/12)/(1 -(1 +0.165/12)^-12) = $7000×0.01375/(1 -1.01375^-12)
A = $636.77
The total of 12 such payments is ...
$636.77 × 12 = $7641.24
You will pay a total of about $7641.24.
_____
<em>Additional comment</em>
Since the payment amount is rounded down, the actual payoff will be slightly more. Usually, the lender will round interest and principal to the nearest cent on each monthly statement. The final payment will likely be a few cents more than the monthly payment shown here.
Answer:
(4, -6), (-10, -6), (-3, 1), (-3, -13)
Step-by-step explanation:
If we add/subtract t to/from any x/y coordinate, we will form a line segment with length 7. Hence, (4, -6), (-10, -6), (-3, 1), (-3, -13).
Answer:
B, Work with the math instructors to create a list of students currently taking a math class. Randomly select
Step-by-step explanation:
Let's think of each scenario at a time.
(A) We select 100 students enrolled in college randomly that should be fine because we are taking only students that can take classes. this rules out faculty members and any other persons but also there may be students that will never take any math course as part of their study plan, this is ruled out on that basis.
(B)if we take 100 students from the list of math instructor, that will ensure that we have taken students that are taking math class now, and math is part of their study plan, seems fine.
(C) visiting cafeteria randomly on multiple days will give us random persons that may not even be enrolled in university. this can be ruled out on that basis.
(D)Ten class at random and surveying each student in every class will make sampling size large or small depending on students enrolled in each of the class this will not give us reliable results.
We can conclude that (B) is the beast method for obtaining reliable results.
Answer:it is c
Step-by-step explanation:
fjhrhgvfj