1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
3 years ago
13

urpi elaboro un panel decorativo con 2 1/2 pliegos de cartulina para el fondo, 1 2/3 de peligro para el borde y 5/6 de peligro p

ara el diseñador interior .Si al inicio tenia medio pliego, cuantos pliegos de cartulina tuvo que comprar
Mathematics
1 answer:
nadya68 [22]3 years ago
4 0

Urpi tuvo que comprar 4 \,\frac{1}{6} pliegos de cartulina para la elaboración del panel decorativo.

La cantidad de cartulina que Urpi compró para la elaboración del panel decorativo es la cantidad utilizada de cartulina menos la cantidad inicial disponible:

x = 2\,\frac{1}{2} + 1\,\frac{1}{3} + \frac{5}{6} - \frac{1}{2}

x = 2 + \frac{1}{2} + 1 +\frac{1}{3} + \frac{5}{6} - \frac{1}{2}

x = 3 + \frac{1}{3} + \frac{5}{6}

x = 3 + \frac{7}{6}

x = 3 + 1 + \frac{1}{6}

x = 4 \,\frac{1}{6}

Urpi tuvo que comprar 4 \,\frac{1}{6} pliegos de cartulina para la elaboración del panel decorativo.

Invitamos cordialmente a ver este problema aritmético: brainly.com/question/24517497

You might be interested in
5 less than half a number, x<br><br> please help i will give you the brainliest answer
Karo-lina-s [1.5K]

Answer: 1/2x -5

Step-by-step explanation:

Half of x , less 5. (5 less just means subtract)

5 0
3 years ago
Find x. A. 11√6/2 B. 22 C. 33 D. 11√3/2
Phoenix [80]

Answer:

B

Step-by-step explanation:

using the tangent ratio on the triangle on the right and the exact value

tan60° = \sqrt{3} , then letting the altitude be h

tan60° = \frac{opposite}{adjacent} = \frac{11\sqrt{6} }{h}  = \sqrt{3} ( multiply both sides by h )

11\sqrt{6} = h × \sqrt{3} ( divide both sides by \sqrt{3} )

11\sqrt{2} = h

using the sine ratio in the triangle on the left and the exact value

sin45° = \frac{\sqrt{2} }{2} , then

sin45° = \frac{opposite}{hypotenuse} = \frac{h}{x} = \frac{11\sqrt{2} }{x} = \frac{\sqrt{2} }{2} ( cross- multiply )

\sqrt{2} × x = 22\sqrt{2} ( divide both sides by \sqrt{2} )

x = 22

6 0
1 year ago
Part I - To help consumers assess the risks they are taking, the Food and Drug Administration (FDA) publishes the amount of nico
IRINA_888 [86]

Answer:

(I) 99% confidence interval for the mean nicotine content of this brand of cigarette is [24.169 mg , 30.431 mg].

(II) No, since the value 28.4 does not fall in the 98% confidence interval.

Step-by-step explanation:

We are given that a new cigarette has recently been marketed.

The FDA tests on this cigarette gave a mean nicotine content of 27.3 milligrams and standard deviation of 2.8 milligrams for a sample of 9 cigarettes.

Firstly, the Pivotal quantity for 99% confidence interval for the population mean is given by;

                                  P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean nicotine content = 27.3 milligrams

            s = sample standard deviation = 2.8 milligrams

            n = sample of cigarettes = 9

            \mu = true mean nicotine content

<em>Here for constructing 99% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.</em>

<u>Part I</u> : So, 99% confidence interval for the population mean, \mu is ;

P(-3.355 < t_8 < 3.355) = 0.99  {As the critical value of t at 8 degree

                                      of freedom are -3.355 & 3.355 with P = 0.5%}  

P(-3.355 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 3.355) = 0.99

P( -3.355 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 3.355 \times {\frac{s}{\sqrt{n} } } ) = 0.99

P( \bar X-3.355 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+3.355 \times {\frac{s}{\sqrt{n} } } ) = 0.99

<u />

<u>99% confidence interval for</u> \mu = [ \bar X-3.355 \times {\frac{s}{\sqrt{n} } } , \bar X+3.355 \times {\frac{s}{\sqrt{n} } } ]

                                          = [ 27.3-3.355 \times {\frac{2.8}{\sqrt{9} } } , 27.3+3.355 \times {\frac{2.8}{\sqrt{9} } } ]

                                          = [27.3 \pm 3.131]

                                          = [24.169 mg , 30.431 mg]

Therefore, 99% confidence interval for the mean nicotine content of this brand of cigarette is [24.169 mg , 30.431 mg].

<u>Part II</u> : We are given that the FDA tests on this cigarette gave a mean nicotine content of 24.9 milligrams and standard deviation of 2.6 milligrams for a sample of n = 9 cigarettes.

The FDA claims that the mean nicotine content exceeds 28.4 milligrams for this brand of cigarette, and their stated reliability is 98%.

The Pivotal quantity for 98% confidence interval for the population mean is given by;

                                  P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean nicotine content = 24.9 milligrams

            s = sample standard deviation = 2.6 milligrams

            n = sample of cigarettes = 9

            \mu = true mean nicotine content

<em>Here for constructing 98% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.</em>

So, 98% confidence interval for the population mean, \mu is ;

P(-2.896 < t_8 < 2.896) = 0.98  {As the critical value of t at 8 degree

                                       of freedom are -2.896 & 2.896 with P = 1%}  

P(-2.896 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 2.896) = 0.98

P( -2.896 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 2.896 \times {\frac{s}{\sqrt{n} } } ) = 0.98

P( \bar X-2.896 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+2.896 \times {\frac{s}{\sqrt{n} } } ) = 0.98

<u />

<u>98% confidence interval for</u> \mu = [ \bar X-2.896 \times {\frac{s}{\sqrt{n} } } , \bar X+2.896 \times {\frac{s}{\sqrt{n} } } ]

                                          = [ 24.9-2.896 \times {\frac{2.6}{\sqrt{9} } } , 24.9+2.896 \times {\frac{2.6}{\sqrt{9} } } ]

                                          = [22.4 mg , 27.4 mg]

Therefore, 98% confidence interval for the mean nicotine content of this brand of cigarette is [22.4 mg , 27.4 mg].

No, we don't agree on the claim of FDA that the mean nicotine content exceeds 28.4 milligrams for this brand of cigarette because as we can see in the above confidence interval that the value 28.4 does not fall in the 98% confidence interval.

5 0
3 years ago
Help meee I don't know what to do anymore--
balandron [24]

Answer:

It is increasing by 40 and the first game will 40 the next is 80 the next is 120 and it keeps going on

Step-by-step explanation:

5 0
2 years ago
3) Using the picture, find the measure of side J.
Elenna [48]

Answer:

solution is in attachment

hope it helps

4 0
3 years ago
Other questions:
  • 1. Name 4 technologies that have helped America develop into a powerful country.
    7·1 answer
  • One leg of a right triangle measures 6 inches. The remaining leg measures 6 square root of 3 inches. What is the measure of the
    5·1 answer
  • Eric has 3 cakes. He has to divide the cakes equally among his friends so that each one gets 13 of a cake. How many total pieces
    10·1 answer
  • 25 − (8 − 4) ÷ 6 • 3=what plzzzz answer!<br> Will mark Brainliest!!!!
    9·2 answers
  • There are 1000 students in a college.Out of 20000 in the whole university in a study of 200 were found to be smokers in the coll
    13·1 answer
  • Y=7/x, x≠0 need the graph answer!!
    11·1 answer
  • Options 1,2,3 or4?<br><br> Help!
    8·2 answers
  • 20° + 2pº<br> 70°<br> p =<br> degrees
    14·2 answers
  • (-3x2 + x + 5) − (4x2 − 2x)
    8·2 answers
  • what is the ratio of basketball score to all scores right the simplest form. the baseball score is 45 the basketball score is 14
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!