1)V=Ixwxh
=5 cm x 3 cm x 2 cm
=30 cm³
2)V=bxh
=(10m x 6m) x 4m
= 60 m² x4 m
3)V=Ixwxh
=3 cm x 3 cm x 3 cm =27 cm³
=240 m³
Answer:
As per the question, we need to convert product of sum into sum of product,
Given:
(A' +B+C')(A'+C'+D)(B'+D'),
At first, we will solve to parenthesis,
= (A'+C'+BD) (B'+D')
As per the Rule, (A+B)(A+C) = A+BC, In our case if we assume X = A'+C', then,
(A' +B+C')(A'+C'+D) = (A'+C'+B)(A'+C'+D) = (A'+C'+BD)
Now,
= (A'+C'+BD) (B'+D') = A'B' + A'D' + C'B' +C'D' +BDB' +BDD"
As we know that AA' = 0, it mean
=A'B'+A'D'+C'B'+C'D'+D*0+B0
=A'B'+A'D'+C'B'+C'D' as B * 0 and D*0 = 0
Finally, minimum sum of product boolean expression is
A''B'+A'D'+C'B'+C'D'
=
A. Research
B. 50%
C. 15%
Hope this helps! Comment if you want a better explanation, have questions, or concerns! :)
Answer:
(5,9)
Step-by-step explanation:
3y=4x+7
5y=4x+25
Subtract the two equations to eliminate x
5y=4x+25
-( 3y=4x+7)
------------------
2y = 0x +18
Divide by 2
2y/2 = 18/2
y =9
Now find x
3y = 4x+7
3*9 = 4x+7
27 = 4x+7
Subtract 7
20 = 4x
Divide 4
20/4 = 4x/4
5 =x
(5,9)