Answer:
The probability that a randomly selected component needs rework when it came from line A₁ is 0.3623.
Step-by-step explanation:
The three different assembly lines are: A₁, A₂ and A₃.
Denote <em>R</em> as the event that a component needs rework.
It is given that:

Compute the probability that a randomly selected component needs rework as follows:

Compute the probability that a randomly selected component needs rework when it came from line A₁ as follows:

Thus, the probability that a randomly selected component needs rework when it came from line A₁ is 0.3623.
the main equation you need to do is just 36 x (3/4), you will get that 27 dollars has been spent.
now you just do 36 - 27 to get the final answer
Answer:
x=4
Step-by-step explanation:
To solve for x, use inverse operations:
-8x+3 = -29 Subtract 3 from both sides
-8x +3 -3 = -29 -3
-8x = -32 Divide both sides by -8
x = 4
Answer:
70/5985
Step-by-step explanation:
We know that a quadrilateral needs to have four vertices (or points on the circle). There are always two ways to link the cross — horizontally or vertically. Using my limited knowledge of combinations, we know that choosing four points out of seven equals 35. Multiplying the two ways to connect those lines (again, horizontally and vertically) makes 35*2 = 70 "bow-tie quadrilaterals" that can be formed on the circle using four points. There are 5985 ways four chords can be chosen out of twenty-five chords because C(25,4) equals 5985, so the probability is 70/5985... and then we just need to simplify that fraction.
<u>Answer:</u>
-2
<u>Step-by-step explanation:</u>
We have been given a function f(x)=\frac{-2x}{x+1} and we are asked to find the horizontal asymptote of our given function.
Recalling the rules for a horizontal asymptote:
1. If the numerator and denominator have equal degree, the horizontal asymptote will be the ratio of the leading coefficients.
2. If the polynomial of denominator has larger degree than the numerator, then the horizontal asymptote will be the x-axis or y=0.
3. If the polynomial of numerator has larger degree than denominator, then the function has no horizontal asymptote.
Here, the numerator and denominator are of the same degree. So the horizontal asymptote will be the ratio of the coefficients.
Horizontal asymptote =
= -2