The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then





Answer:
D: 57 + 30x = 150
Step-by-step explanation:
63-3(2-10x)=150
63 - 6 + 30x = 150
57 + 30x = 150
Answer:
The answer is C.
Step-by-step explanation:
y = kx → e =
30
4
h → e = 7.5h
The independent variable is hours worked, h, and the dependent variable is total earnings, e. The independent variable is the input value of a function. The dependent variable is the output value of a function.
Answer:
It is B
Step-by-step explanation:
I hope this helps!
Bro bruhhhh bruh bruh ahahahhaah 2092&29 answer is D