43 $3500.00
because you must calculate $175,000.00*.02 so when that is multiplied it equalos $3500.00
Answer:
The function for the outside temperature is represented by
, where t is measured in hours.
Step-by-step explanation:
Since outside temperature can be modelled as a sinusoidal function, the period is of 24 hours and amplitude of temperature and average temperature are, respectively:
Amplitude


Mean temperature


Given that average temperature occurs six hours after the lowest temperature is registered. The temperature function is expressed as:
![T(t) = \bar T + A \cdot \sin \left[2\pi\cdot\frac{t-6\,h}{\tau} \right]](https://tex.z-dn.net/?f=T%28t%29%20%3D%20%5Cbar%20T%20%2B%20A%20%5Ccdot%20%5Csin%20%5Cleft%5B2%5Cpi%5Ccdot%5Cfrac%7Bt-6%5C%2Ch%7D%7B%5Ctau%7D%20%5Cright%5D)
Where:
- Mean temperature, measured in degrees.
- Amplitude, measured in degrees.
- Daily period, measured in hours.
- Time, measured in hours. (where t = 0 corresponds with 5 AM).
If
,
and
, the resulting function for the outside temperature is:
![T(t) = 85\º + 15\º \cdot \sin \left[\frac{t-6\,h}{24\,h} \right]](https://tex.z-dn.net/?f=T%28t%29%20%3D%2085%5C%C2%BA%20%2B%2015%5C%C2%BA%20%5Ccdot%20%5Csin%20%5Cleft%5B%5Cfrac%7Bt-6%5C%2Ch%7D%7B24%5C%2Ch%7D%20%5Cright%5D)
Answer:
The artist used 8.6 inches more of silver wire
Step-by-step explanation:
Perimeter of the square
P = 4*a
P = 4*a = 40 in
a = 10 in
Each side of the square has a length of 10 in
The diameter of the circle is equal to the length of the side of the square
Diameter = 10 in
Perimeter of the circle
P_c = 2*π*radius = π*diameter
P_c = (3.14)*10 in = 31.4 in
Inches of silver wire (square) = 40 in
Inches of copper wire (circle) = 31.4 in
40- 31.4 in = 8.6 in
Answer:
0 boxes minimum
Step-by-step explanation:
The mass of the truck and paper must satisfy ...
22.5b + 2948.35 ≤ 4700 . . . . total truck mass cannot exceed bridge limits
22.5b ≤ 1751.65
b ≤ 77.85
The driver can take a minimum of 0 boxes and a maximum of 77 boxes of paper over the bridge.
_____
The question asks for the <em>minimum</em>. We usually expect such a question to ask for the <em>maximum</em>.
Answer:
can you be more specific? give a problem
Step-by-step explanation: