1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
3 years ago
10

List the number in order from least to greatest. |-8|,-8,0,|7|,-7

Mathematics
2 answers:
garik1379 [7]3 years ago
7 0
The answer is -8 , -7, 0, |7| , |-8|
Reptile [31]3 years ago
5 0
0,-8,-7,7,8 there is that correct??????
You might be interested in
Steve likes to entertain friends at parties with "wire tricks." Suppose he takes a piece of wire 60 inches long and cuts it into
Alex_Xolod [135]

Answer:

a) the length of the wire for the circle = (\frac{60\pi }{\pi+4}) in

b)the length of the wire for the square = (\frac{240}{\pi+4}) in

c) the smallest possible area = 126.02 in² into two decimal places

Step-by-step explanation:

If one piece of wire for the square is y; and another piece of wire for circle is (60-y).

Then; we can say; let the side of the square be b

so 4(b)=y

         b=\frac{y}{4}

Area of the square which is L² can now be said to be;

A_S=(\frac{y}{4})^2 = \frac{y^2}{16}

On the otherhand; let the radius (r) of the  circle be;

2πr = 60-y

r = \frac{60-y}{2\pi }

Area of the circle which is πr² can now be;

A_C= \pi (\frac{60-y}{2\pi } )^2

     =( \frac{60-y}{4\pi } )^2

Total Area (A);

A = A_S+A_C

   = \frac{y^2}{16} +(\frac{60-y}{4\pi } )^2

For the smallest possible area; \frac{dA}{dy}=0

∴ \frac{2y}{16}+\frac{2(60-y)(-1)}{4\pi}=0

If we divide through with (2) and each entity move to the opposite side; we have:

\frac{y}{18}=\frac{(60-y)}{2\pi}

By cross multiplying; we have:

2πy = 480 - 8y

collect like terms

(2π + 8) y = 480

which can be reduced to (π + 4)y = 240 by dividing through with 2

y= \frac{240}{\pi+4}

∴ since y= \frac{240}{\pi+4}, we can determine for the length of the circle ;

60-y can now be;

= 60-\frac{240}{\pi+4}

= \frac{(\pi+4)*60-240}{\pi+40}

= \frac{60\pi+240-240}{\pi+4}

= (\frac{60\pi}{\pi+4})in

also, the length of wire for the square  (y) ; y= (\frac{240}{\pi+4})in

The smallest possible area (A) = \frac{1}{16} (\frac{240}{\pi+4})^2+(\frac{60\pi}{\pi+y})^2(\frac{1}{4\pi})

= 126.0223095 in²

≅ 126.02 in² ( to two decimal places)

4 0
4 years ago
Help please!!! I dont understand these questions<br><br><br>currently attaching photos dont delete
Katyanochek1 [597]

Answer:

  1. b/a
  2. 16a²b²
  3. n¹⁰/(16m⁶)
  4. y⁸/x¹⁰
  5. m⁷n³n/m

Step-by-step explanation:

These problems make use of three rules of exponents:

a^ba^c=a^{b+c}\\\\(a^b)^c=a^{bc}\\\\a^{-b}=\dfrac{1}{a^b} \quad\text{or} \quad a^b=\dfrac{1}{a^{-b}}

In general, you can work the problem by using these rules to compute the exponents of each of the variables (or constants), then arrange the expression so all exponents are positive. (The last problem is slightly different.)

__

1. There are no "a" variables in the numerator, and the denominator "a" has a positive exponent (1), so we can leave it alone. The exponent of "b" is the difference of numerator and denominator exponents, according to the above rules.

\dfrac{b^{-2}}{ab^{-3}}=\dfrac{b^{-2-(-3)}}{a}=\dfrac{b}{a}

__

2. 1 to any power is still 1. The outer exponent can be "distributed" to each of the terms inside parentheses, then exponents can be made positive by shifting from denominator to numerator.

\left(\dfrac{1}{4ab}\right)^{-2}=\dfrac{1}{4^{-2}a^{-2}b^{-2}}=16a^2b^2

__

3. One way to work this one is to simplify the inside of the parentheses before applying the outside exponent.

\left(\dfrac{4mn}{m^{-2}n^6}\right)^{-2}=\left(4m^{1-(-2)}n^{1-6}}\right)^{-2}=\left(4m^3n^{-5}}\right)^{-2}\\\\=4^{-2}m^{-6}n^{10}=\dfrac{n^{10}}{16m^6}

__

4. This works the same way the previous problem does.

\left(\dfrac{x^{-4}y}{x^{-9}y^5}\right)^{-2}=\left(x^{-4-(-9)}y^{1-5}\right)^{-2}=\left(x^{5}y^{-4}\right)^{-2}\\\\=x^{-10}y^{8}=\dfrac{y^8}{x^{10}}

__

5. In this problem, you're only asked to eliminate the one negative exponent. That is done by moving the factor to the numerator, changing the sign of the exponent.

\dfrac{m^7n^3}{mn^{-1}}=\dfrac{m^7n^3n}{m}

3 0
3 years ago
Solve for x leave answer as decimal <br> 6/5=x/3
777dan777 [17]

Answer:

3 3/5 =x

3 .6 =x

Step-by-step explanation:

6/5 = x/3

Use cross products

6*3 = 5*x

18 = 5x

Divide each side by 5

18/5 = 5x/5

18/5 =x

3 3/5 =x

8 0
3 years ago
Read 2 more answers
2783 and 7283. The value of 2 in _ is _ times the value of two in _. The 2 is the underlined digit.
NARA [144]

The value of 2 in 2783 (2000) is 10 times the value of two in 7283 (200).

Hope this helped!

Nate

3 0
3 years ago
HELLLLLLLLLLLPPPP. I have a test on this on friday and I need to understand it!
kramer

Answer:

The smallest number n could be is 64.

Step-by-step explanation:

35 + 64 = 99

64/8 = 8

\sqrt{64+225} = √289 = 17

5 0
4 years ago
Other questions:
  • What is 3x - 4 + 20 =55
    10·1 answer
  • Order of operations
    15·2 answers
  • The opening balance of the May billing cycle for Marco's credit card was $3659. If he makes a new purchase of $100 on the 20th o
    9·2 answers
  • When registering their cars, owners must identify the color that covers the largest portion of the vehicle. In one region, the p
    11·1 answer
  • Suppose legislation requiring the Fed to keep the inflation rate between 1.5% and 2.5% per year is passed by Congress. This law
    9·1 answer
  • Between which values does √111 lie
    11·2 answers
  • Solve 3x-4y=18,9x+2y=12
    8·1 answer
  • Explain how you can use a model to find 6 x 17
    8·1 answer
  • Can someone help me
    14·1 answer
  • EXPLAIN AND I WILL GIVE BRAINLIEST
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!