Answer:
t_o = 3, so solution exists on (0,4).
Step-by-step explanation:
Use Theorem
Divide equation with t(t — 4).
y''+[3/(t-4)]*y'+ [4/t(t-4)]*y=2/t(t-4)
p(t)=3/t-4—> continuous on (-∞, 4) and (4,∞)
q(t) = 4/t(t-4) —> continuous on (-∞,0), (0,4) and (4, ∞)
g(t) = 2/t(t-4)—> continuous on (-∞, 0), (0,4) and (4,∞)
t_o = 3, so solution exists on (0,4).
Answer:
the answer to the question would be c.
1700-1475=225
Step-by-step explanation:
Answer:
f(0)=4
Step-by-step explanation:
f(0)=4*9^0=4*1=4
Step-by-step explanation:
Assuming 10 cups of lemon-lime soda and 5 cups of orange soda make 15 cups of punch, we can write proportions for each problem.
x / 130 cups punch = 10 cups lemon-lime / 15 cups punch
x = 86.67 cups lemon-lime soda
y / 130 cups punch = 5 cups orange soda / 15 cups punch
y = 43.33 cups orange soda
x / 65 cups punch = 10 cups lemon-lime / 15 cups punch
x = 43.33 cups lemon-lime soda
y / 65 cups punch = 5 cups orange soda / 15 cups punch
y = 21.67 cups orange soda
x / 195 cups punch = 10 cups lemon-lime / 15 cups punch
x = 130 cups lemon-lime soda
y / 195 cups punch = 5 cups orange soda / 15 cups punch
y = 65 cups orange soda

Domain restrictions are what x values make the denominator zero.
a² + 5a - 36 = (a + 9)(a - 4)
a ≠ -9 ; a ≠ 4