Answer:
There is about 4,164/4,165 chances of not getting getting a four of a kind. So, it is extremely unlikely or even borderline impossible in that situation to get a four of a kind.
<u>But in the long run, it can be increased only if you keep drawing. So, the awnser would have to be. D </u>
Step-by-step explanation:
A. It does mean that if you are dealt 4165 five‑card poker hands, one will be four‑of‑a‑kind.
B. It does not mean that all will be four‑of‑a‑kind. The probability is actually saying that only on the 4165 the poker hand will you get a four‑of‑a‑kind, not just on any of the 4165 poker hands.
C. The probability is actually saying that in the long run, with a large number of five‑card poker hands, the fraction in which you will be dealt a four‑of‑a‑kind is 1 / 4165.
D. The chance you will be dealt four‑of‑a‑kind is 1 / 4165 only on the first hand. This chance will then increase with each new hand you are dealt until you eventually win
500/4= 125
she has written 125 words and needs to write 375 more
!5% is equivalent to 15 parts over the whole 100 part. It is written in proportions as 15/100.
Similarly, you need to find how many parts in 80 are equivalent to 15%or 15/100. So, just equate both equation with x as an unknown.
x/80 = 15/100
x = (15/100)*80
x = 12
Thus, the 15% of 80 is 12.
Answer:

Step-by-step explanation:
(
)
Multiply
by each term in the parentheses.
+ 
Now, all you have to do is simplify.

Answer:
3.84% probability that it has a low birth weight
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

If we randomly select a baby, what is the probability that it has a low birth weight?
This is the pvalue of Z when X = 2500. So



has a pvalue of 0.0384
3.84% probability that it has a low birth weight