If each couple rests for
minutes every hour, the time spent resting,
, after
hours is given by
![r = kh](https://tex.z-dn.net/?f=%20r%20%3D%20kh%20)
We know that a couple spent 25 minutes resting in 5 hour. So, the rate is
![25 = 5k \iff k = \dfrac{25}{5}=5](https://tex.z-dn.net/?f=%2025%20%3D%205k%20%5Ciff%20k%20%3D%20%5Cdfrac%7B25%7D%7B5%7D%3D5%20)
So, every couple rests 5 minutes per hour.
This means that, after 8 hours, the couples rest
![r = 5\cdot 8 = 40](https://tex.z-dn.net/?f=%20r%20%3D%205%5Ccdot%208%20%3D%2040%20)
minutes.
Straight line because it’s 180 degrees.
M(x) = 4x^3 - 5x^2 - 7x
Let us first find the zeros of the function.
That is when it is equal to zero.
m(x) = 4x^3 - 5x^2 - 7x = 0
x(4x^2 - 5x - 7) = 0. Therefore x = 0 or 4x^2 - 5x - 7 = 0.
Using a quadratic function calculator to solve 4x^2 - 5x - 7
x = 2.09, -0.84
Therefore the zeros are x =-0.84, 0, 2.09 for the function m(x).
The intervals observed are imagining that the zeros are on the number line:
x<-0.84, -0.84<x<0, 0<x<2.09, x>2.09.
For each of this range we would test the function with a number that falls in the range.
The function is decreasing in the interval where it is less than 0.
For x<-0.84, let us test x = -1, m(x) = 4x^3 - 5x^2 - 7x = 4(-1)^3 - 5(-1)^2 - 7(-1) = -4 -5 +7 = -2, -2 < 0, so it is decreasing here.
For -0.84<x<0, let us test x = -0.5, m(x) = 4x^3 - 5x^2 - 7x = 4(-0.5)^3 - 5(-0.5)^2 - 7(-0.5) = -0.5 -1.25 +3.5 = 1.75, 1.75 >0. It is not decreasing.
For 0<x<2.09, let us test x = 1, m(x) = 4x^3 - 5x^2 - 7x =
4(1)^3 - 5(1)^2 - 7(1) = 4 -5 -7 = -8, -8 <0. It is decreasing.
For x>2.09, let us test x = 3, m(x) = 4x^3 - 5x^2 - 7x =
4(3)^3 - 5(3)^2 - 7(3) = 108 -45 -21 = 42, 42 >0. It is not decreasing.
So the function is decreasing in the intervals:
x < -0.84, & 0<x<2.09.
C. The graph g(x) = x − 7 is the result of translating the graph of f(x) = x + 3 down 10 units.
Sure hope this helps you and good on whatever math test or exam is coming up soon!! :D
4x+(x+5)=20
5x+5=20
5x=15
X=3