The computation illustrated shows that the numbers that can be used to get the sum of 42 will be 12 and 15.
<h3>How to compute the value?</h3>
It should be noted that the puzzle simply involves algebraic thinking. The goal is to find numbers that can be added together that will give 42.
From the information, it should be noted that 7 and 8 have been given. Therefore, this will be:
= 42 - (7 + 8)
= 42 - 15
= 27
Therefore, the numbers that can give 27 can be put in the box. An example is 12 and 15.
Learn more about computations on:
brainly.com/question/4658834
#SPJ1
1) <span>B)3x+6y=22
6x+12y=44
because the equations are equivalent to each other
2*(3x+6y=22) -----> 6x+12y=44
2) </span><span>5x+10y=15 should be multiplied by -2, to get 5x*(-2)=-10x, and x then can be eliminated
</span><span>A)-2</span>
Answer:
2. 4th degree polynomial
Step-by-step explanation:
The degree is the highest exponent in the expression. Since the highest exponent is 4, this is a 4th degree polynomial.
Answer with explanation:
1. The given equations are
3x -5 y=2
-x+2 y= 0
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right] ,\\\\ X=\left[\begin{array}{c}x&y\end{array}\right],\\\\B=\left[\begin{array}{c}2&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-5%5C%5C-1%262%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%2C%5C%5C%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D)

Adj.A=Transpose of cofactor of Matrix A
![Adj.A=\left[\begin{array}{cc}2&1\\5&3\end{array}\right] ,\\\\ |A|=6-5\\\\|A|=1\\\\\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{cc}2&5\\1&3\end{array}\right] \times \left[\begin{array}{c}2&0\end{array}\right]\\\\x=4, y=2](https://tex.z-dn.net/?f=Adj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C5%263%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20%7CA%7C%3D6-5%5C%5C%5C%5C%7CA%7C%3D1%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%265%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D4%2C%20y%3D2)
2.
The given equations are
x+y-z=2
x+z=7
2 x +y+z=13
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{ccc}1&1&-1\\1&0&1\\2&1&1\end{array}\right]\\\\ X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]\\\\B= \left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\\rightarrow X=A^{-1}B\\\\\rightarrow X=\frac{Adj.A}{|A|}\times B\\\\a_{11}=-1,a_{12}=1,a_{13}=1,a_{21}=-2,a_{22}=3,a_{23}=1,a_{31}=1,a_{32}=-2,a_{33}=-1\\\\|A|=1\times(0-1)-1\times(1-2)-1\times(1-0)\\\\=-1+1-1\\\\|A|=-1\\\\Adj.A=\left[\begin{array}{ccc}-1&-2&1\\1&3&-2\\1&1&-1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%26-1%5C%5C1%260%261%5C%5C2%261%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Crightarrow%20X%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Crightarrow%20X%3D%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%5Ctimes%20B%5C%5C%5C%5Ca_%7B11%7D%3D-1%2Ca_%7B12%7D%3D1%2Ca_%7B13%7D%3D1%2Ca_%7B21%7D%3D-2%2Ca_%7B22%7D%3D3%2Ca_%7B23%7D%3D1%2Ca_%7B31%7D%3D1%2Ca_%7B32%7D%3D-2%2Ca_%7B33%7D%3D-1%5C%5C%5C%5C%7CA%7C%3D1%5Ctimes%280-1%29-1%5Ctimes%281-2%29-1%5Ctimes%281-0%29%5C%5C%5C%5C%3D-1%2B1-1%5C%5C%5C%5C%7CA%7C%3D-1%5C%5C%5C%5CAdj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-2%261%5C%5C1%263%26-2%5C%5C1%261%26-1%5Cend%7Barray%7D%5Cright%5D)
![\frac{Adj.A}{|A|}=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\\\\X=A^{-1}B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\times\left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\x=3,y=3,z=4](https://tex.z-dn.net/?f=%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CX%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D3%2Cy%3D3%2Cz%3D4)
Tbh I really don’t know and I hope someone helps you