Question:
If a sample of 2 hammer is selected
(a) find the probability that all in the sample are defective.
(b) find the probability that none in the sample are defective.
Answer:
a 
b 
Step-by-step explanation:
Given
--- hammers
--- selection
This will be treated as selection without replacement. So, 1 will be subtracted from subsequent probabilities
Solving (a): Probability that both selection are defective.
For two selections, the probability that all are defective is:




Solving (b): Probability that none are defective.
The probability that a selection is not defective is:

For two selections, the probability that all are not defective is:




The answer is '<span>f(x) is an odd degree polynomial with a positive leading coefficient'.
An odd degree polynomial with a positive leading coefficient will have the graph go towards negative infinity as x goes towards negative infinity, and go towards infinity as x goes towards infinity.
An even degree polynomial with a negative leading coefficient will have the graph go towards infinity as x goes toward negative infinity, and go towards negative infinity as x goes toward infinity.
g(x) would have a a positive leading coefficient with an even degree, as the graph goes towards infinity as x goes towards either negative or positive infinity.
</span>
11/8 or 13/8 is the answer.
Answer:
I'm not sure what the answer is but I will tell you when I get it
Answer:
5.26
Step-by-step explanation:
Of the numbers given, opnly 5.26 is larger than 5.02.